Results 231 to 240 of about 4,909,083 (351)

SAFE-OPT: A Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints [PDF]

open access: gold
Eric R. Cole   +6 more
openalex   +1 more source

Self‐Driving Laboratory Optimizes the Lower Critical Solution Temperature of Thermoresponsive Polymers

open access: yesAdvanced Intelligent Discovery, EarlyView.
A low‐cost, self‐driving laboratory is developed to democratize autonomous materials discovery. Using this "frugal twin" hardware architecture with Bayesian optimization, the platform rapidly converges to target lower critical solution temperature (LCST) values while self‐correcting from off‐target experiments, demonstrating an accessible route to data‐
Guoyue Xu, Renzheng Zhang, Tengfei Luo
wiley   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

SuperResNET: Model‐Free Single‐Molecule Network Analysis Software Achieves Molecular Resolution of Nup96

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
SuperResNET is a powerful integrated software that reconstructs network architecture and molecular distribution of subcellular structures from single molecule localization microscopy datasets. SuperResNET segments the nuclear pore complex and corners, extracts size, shape, and network features of all segmented nuclear pores and uses modularity analysis
Yahongyang Lydia Li   +6 more
wiley   +1 more source

Predicting Performance of Hall Effect Ion Source Using Machine Learning

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
This study introduces HallNN, a machine learning tool for predicting Hall effect ion source performance using a neural network ensemble trained on data generated from numerical simulations. HallNN provides faster and more accurate predictions than numerical methods and traditional scaling laws, making it valuable for designing and optimizing Hall ...
Jaehong Park   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy