Results 221 to 230 of about 5,203 (262)
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
Confirmation by Robustness Analysis: A Bayesian Account. [PDF]
Casini L, Landes J.
europepmc +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
An extensive re-evaluation of evidence and analyses of the Randomised Badger Culling Trial (RBCT) I: Within proactive culling areas. [PDF]
Mills CL, Woodroffe R, Donnelly CA.
europepmc +1 more source
This work investigates the optimal initial data size for surrogate‐based active learning in functional material optimization. Using factorization machine (FM)‐based quadratic unconstrained binary optimization (QUBO) surrogates and averaged piecewise linear regression, we show that adequate initial data accelerates convergence, enhances efficiency, and ...
Seongmin Kim, In‐Saeng Suh
wiley +1 more source
Conscious active inference II: Quantum orchestrated objective reduction among intraneuronal microtubules naturally accounts for discrete perceptual cycles. [PDF]
Wiest MC, Puniani AS.
europepmc +1 more source
A machine learning‐guided self‐driving laboratory screened over 500 nickel‐based layered double‐hydroxide catalysts for alkaline oxygen evolution. Out of the eight metals, the robot uncovered a quaternary Ni–Fe–Cr–Co catalysts requiring only 231 mV overpotential to reach 20 mA cm−2.
Nis Fisker‐Bødker +3 more
wiley +1 more source
An AI‐assisted approach is introduced to decode synthesis–performance relationships in metal‐organic framework‐derived supercapacitor materials using Bayesian optimization and predictive modeling, streamlining the search for optimal energy storage properties.
David Gryc +8 more
wiley +1 more source
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source

