Results 21 to 30 of about 1,415 (218)
Results on BI-univalent Functions [PDF]
When the class σ \sigma of bi-univalent functions was first defined, it was known that functions of the form ϕ ∘ ψ − 1 ∈ σ \phi \circ {\psi ^{ - 1}} \in \sigma when ϕ \phi and
D. J. Wright, D. Styer
openaire +1 more source
On the Fekete-Szegö problem for classes of bi-univalent functions [PDF]
In this paper we obtain the Fekete-Szego inequalities for the classes $\mathcal{H}_\sigma(\varphi)$, $\mathcal{ST}_\sigma(\alpha, \varphi)$ and $\mathcal{M}_\sigma(\alpha, \varphi)$ of bi-univalent functions defined in terms of subordination. These inequalities result in the bounds of the third coefficient which improve many known results concerning ...
Paweł Zaprawa
openalex +3 more sources
Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions. [PDF]
In the present paper, we introduce two interesting subclasses of meromorphic and bi-univalent functions defined on Δ = { z : z ∈ C , 1 < | z | < ∞ } . For functions belonging to these subclasses, estimates on the initial coefficient | b 0 | and | b 1 | are obtained. Some other closely related results are also represented.
Sakar FM.
europepmc +6 more sources
Development of Novel Subclasses for Bi-Univalent Functions
This manuscript presents the development of new subclasses for bi-univalent functions and the subclasses are closely related to Chebyshev polynomials having Al-Oboudi differential operator. The functions contained in the subclasses were used to account for the initial coefficient estimates of |a2| and |a3| .
Shaharuddin Cik Soh+2 more
openaire +3 more sources
A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions
Three subclasses of analytic and bi-univalent functions are introduced through the use of q−Gegenbauer polynomials, which are a generalization of Gegenbauer polynomials. For functions falling within these subclasses, coefficient bounds a2 and a3 as well as Fekete–Szegö inequalities are derived. Specializing the parameters used in our main results leads
Ala Amourah+5 more
openaire +2 more sources
Initial coefficient bounds for a general class of bi-univalent functions [PDF]
Inspired by the recent works of Srivastava et al. (HMS-AKM-PG), Frasin and Aouf (BAF-MKA) and others (Ali-Ravi-Ma-Mina-class,Caglar-Orhan,Goyal-Goswami,Xu-HMS-AML,Xu-HMS-AMC), we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions.
Halit Orhan, N. Magesh, V. K. Balaji
openalex +6 more sources
Certain Inequalities for a General Class of Analytic and Bi-univalent Functions [PDF]
In this work, the subclass of the function class S of analytic and bi-univalent functions is defined and studied in the open unit disc. Estimates for initial coefficients of Taylor- Maclaurin series of bi-univalent functions belonging these class are ...
Arzu Akgul
doaj +1 more source
In this present paper, we define a new operator in conjugation with the basic (or q-) calculus. We then make use of this newly defined operator and define a new class of analytic and bi-univalent functions associated with the q-derivative operator ...
Timilehin Gideon Shaba+5 more
doaj +1 more source
Coefficient bounds for new subclasses of bi-univalent functions [PDF]
In the present investigation, we consider two new subclasses N?? (?, ?) and N?? (?, ?) of bi?univalent functions defined in the open unit disk u = {z : |z| < 1}. Besides, we find upper bounds for the second and third coefficients for functions in these new subclasses.
Caglar, Murat+2 more
openaire +4 more sources
Estimates for initial coefficients of certain bi-univalent functions
Estimates are obtained for the initial coefficients of a normalized analytic function f in the unit disk D such that f and the analytic extension of f-1 to D belong to certain subclasses of univalent functions. The bounds obtained improve some existing known bounds.
Vibha Madaan+2 more
openaire +3 more sources