Results 11 to 20 of about 160,421 (323)

Bisecting binomial coefficients [PDF]

open access: yesDiscrete Applied Mathematics, 2017
In this paper, we deal with the problem of bisecting binomial coefficients. We find many (previously unknown) infinite classes of integers which admit nontrivial bisections, and a class with only trivial bisections. As a byproduct of this last construction, we show conjectures Q2 and Q4 of Cusick and Li.
Eugen J. Ionaşcu   +2 more
openaire   +5 more sources

A Note on Extended Binomial Coefficients

open access: yes, 2014
We study the distribution of the extended binomial coefficients by deriving a complete asymptotic expansion with uniform error terms. We obtain the expansion from a local central limit theorem and we state all coefficients explicitly as sums of Hermite polynomials and Bernoulli numbers.
Neuschel, Thorsten
openaire   +4 more sources

Supercongruences involving Apéry-like numbers and binomial coefficients

open access: yesAIMS Mathematics, 2022
Let $ \{S_n\} $ be the Apéry-like sequence given by $ S_n = \sum_{k = 0}^n\binom nk\binom{2k}k\binom{2n-2k}{n-k} $. We show that for any odd prime $ p $, $ \sum_{n = 1}^{p-1}\frac {nS_n}{8^n}{\equiv} (1-(-1)^{\frac{p-1}2})p^2\ (\text{ mod}\ {p^3}) $. Let
Zhi-Hong Sun
doaj   +1 more source

Convolution identities involving the central binomial coefficients and Catalan numbers [PDF]

open access: yesTransactions on Combinatorics, 2021
We generalize some convolution identities due to Witula and Qi et al‎. ‎involving the central binomial coefficients and Catalan numbers‎. ‎Our formula allows us to establish many new identities involving these important quantities‎, ‎and recovers some ...
Necdet Batır, Hakan Kucuk, Sezer Sorgun
doaj   +1 more source

Dirichlet series and series with Stirling numbers

open access: yesCubo, 2023
This paper presents a number of identities for Dirichlet series and series with Stirling numbers of the first kind. As coefficients for the Dirichlet series we use Cauchy numbers of the first and second kinds, hyperharmonic numbers, derangement numbers ...
Khristo Boyadzhiev
doaj   +1 more source

Generalized double Fibonomial numbers

open access: yesRatio Mathematica, 2021
From the beginning of 20th century, generalization of binomial coefficient has been deliberated broadly. One of the most famous generalized binomial coefficients are Fibonomial coefficients, obtained by substituting Fibonacci numbers in place of natural ...
Mansi Shah, Shah Devbhadra
doaj   +1 more source

A class of symmetric and non-symmetric band matrices via binomial coefficients

open access: yesSpecial Matrices, 2021
Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is ...
Micheal Omojola, Kilic Emrah
doaj   +1 more source

The p-Adic Valuations of Sums of Binomial Coefficients

open access: yesJournal of Mathematics, 2021
In this paper, we prove three supercongruences on sums of binomial coefficients conjectured by Z.-W. Sun. Let p be an odd prime and let h∈ℤ with 2h−1≡0modp. For a∈ℤ+ and pa>3, we show that ∑k=0pa−1hpa−1k2kk−h/2k≡0modpa+1. Also, for any n∈ℤ+, we have νp∑k=
Yong Zhang, Peisen Yuan
doaj   +1 more source

Binomial Sum Relations Involving Fibonacci and Lucas Numbers

open access: yesAppliedMath, 2023
In this paper, we provide a first systematic treatment of binomial sum relations involving (generalized) Fibonacci and Lucas numbers. The paper introduces various classes of relations involving (generalized) Fibonacci and Lucas numbers and different ...
Kunle Adegoke   +2 more
doaj   +1 more source

Degenerate binomial coefficients and degenerate hypergeometric functions

open access: yesAdvances in Difference Equations, 2020
In this paper, we investigate degenerate versions of the generalized pth order Franel numbers which are certain finite sums involving powers of binomial coefficients.
Taekyun Kim   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy