Results 121 to 130 of about 615,294 (304)

Novel Biologically Active Glass Fiber Functionalized Using Magnesium Phosphate Cement Promotes Bone and Vascular Regeneration

open access: yesAdvanced Biology, EarlyView.
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu   +12 more
wiley   +1 more source

A lite bioinformatics specialization [PDF]

open access: bronze, 2000
Warren T. Jones, Elliot J. Lefkowitz
openalex   +1 more source

Photothermal Hydrogel with Mn3O4 Nanoparticles Alleviates Intervertebral Disc Degeneration by Scavenging ROS and Regulating Extracellular Matrix Metabolism

open access: yesAdvanced Functional Materials, EarlyView.
The MPTT‐nanozyme‐hydrogel system (Mn3O4@ChS‐HA) provides a multifunctional therapeutic strategy for intervertebral disc degeneration (IVDD), effectively targeting oxidative stress and enhancing AF repair by restoring extracellular matrix (ECM) and redox homeostasis.
Yangyang Chen   +13 more
wiley   +1 more source

ISMB-2000: Bioinformatics enters a new millennium [PDF]

open access: bronze, 2000
Philip E. Bourne, Michael Gribskov
openalex   +1 more source

Oligohistidine‐Functionalized Single‐Walled Carbon Nanotube‐Guided RNA Delivery to Improve Shoot Regeneration Efficiency in Plant Calli

open access: yesAdvanced Functional Materials, EarlyView.
The pH‐sensitive His6‐SWNTs, which is functionalized with oligohistidine, can deliver STTM396 molecules into callus cells. The STTM396–SWNT complex treatments enhance shoot regeneration efficiency by regulating the miR396‐GRF module in Arabidopsis and tomato calli.
Yeong Yeop Jeong   +7 more
wiley   +1 more source

Aging on Chip: Harnessing the Potential of Microfluidic Technologies in Aging and Rejuvenation Research

open access: yesAdvanced Healthcare Materials, EarlyView.
This review highlights recent advances in microfluidic technologies for modeling human aging and age‐related diseases. It explores how organ‐on‐chip platforms improve physiological relevance, enable rejuvenation strategies, facilitate drug screening, detect senescent cells, and identify biomarkers.
Limor Zwi‐Dantsis   +5 more
wiley   +1 more source

STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning

open access: yesCommunications Biology
Profiling spatial variations of cellular composition and transcriptomic characteristics is important for understanding the physiology and pathology of tissues.
Minsheng Hao   +10 more
doaj   +1 more source

The UK Crop Plant Bioinformatics Network (UK CropNet) [PDF]

open access: gold, 2000
Keith Bradnam, Sean May
openalex   +1 more source

Home - About - Disclaimer - Privacy