Results 111 to 120 of about 512,355 (328)
Application of Biomechanical Methods to the study of Human Locomotion and Athletic Activities [PDF]
Jibi Paul
openalex +1 more source
Bone fracture healing is a complex, timely orchestrated scenario involving multiple cell types and a plethora of cytokines and regulatory factors. To gain further insight, an in vitro model to a) study macrophage polarization under mechanical load in a fibrin hydrogel and b) subsequently assess the effect of conditioned media derived from macrophages ...
Anne Géraldine Guex+4 more
wiley +1 more source
Multifunctional Biomedical Devices with Closed‐Loop Systems for Precision Therapy
This review explores two major types of closed‐loop therapeutic systems: self‐sustained and externally triggered. It highlights recent advances in stimuli‐responsive materials, integrated bioelectronics, and data‐driven control strategies, offering insight into emerging strategies for personalized, responsive drug delivery.
Yixuan Leng, Rujie Sun
wiley +1 more source
Biomechanics: Mechanical Properties of Living Tissues
Y. Fung, R. Skalak
semanticscholar +1 more source
Cell Surface Thiol Engineering Mechanoregulates Myogenic Differentiation via the FAK–PI3K–AKT Axis
Schematic diagram illustrating how cell surface modification of skeletal muscle progenitor cells through TCEP treatment reveals enhanced cell adhesion, intracellular tension, and myogenesis at 19.66 kPa stiffness, leading to optimal cell fusion. In contrast, no significant changes are observed in the softer (10.61 kPa) or stiffer (49.4 kPa) matrices ...
Juyeon Kim+10 more
wiley +1 more source
A mechanically active OsteoChondral Unit (OCU)‐on‐Chip platform mimicking the OCU's functional anatomy and the strain gradient across the osteochondral interface is presented. Upon compartment‐specific hyperphysiological compression, the model replicates mechanisms observed in osteoarthritis (OA) progression, such as calcium crystal accumulation ...
Andrea Mainardi+10 more
wiley +1 more source
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee+9 more
wiley +1 more source
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu+9 more
wiley +1 more source
A Biomechanical Study of the Human Facial Skeleton by Means of Strain-Sensitive Lacquer
Banri Endo
openalex +2 more sources
At the Pointy End of Mechanobiology: AFM for Transient Biomechanical Analysis
Stem cell mechanosensitivity governs lineage commitment through mechanotransduction, but capturing these transient changes in living cells remains challenging. Advanced atomic force microscopy enables high‐resolution analysis of mechanical properties, real‐time protein distribution, and gene expression, offering fresh insights into cell‐environment ...
Kaiwen Zhang+5 more
wiley +1 more source