Results 81 to 90 of about 537,526 (375)

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Review of Meniscus Anatomy and Biomechanics

open access: yesCurrent Reviews in Musculoskeletal Medicine, 2022
E. Mameri   +6 more
semanticscholar   +1 more source

Additively Manufactured 3D Auxetic Metamaterials for Structurally Guided Capacitive and Resistive Tactile Sensing

open access: yesAdvanced Functional Materials, EarlyView.
A 3D‐architected auxetic metamaterial is used to construct capacitive and resistive tactile sensors via digital light processing‐based additive manufacturing. The inward deformation of the proposed structure under compression amplifies local strain, enhancing sensing performance.
Mingyu Kang   +3 more
wiley   +1 more source

Biosupercapacitors for Human‐Powered Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Biosupercapacitors are emerging as biocompatible and integrative energy systems for next‐generation bioelectronics, offering rapid charge–discharge performance and mechanical adaptability. This review systematically categorizes their applications from external to organ‐level systems and highlights their multifunctional roles in sensing, actuation, and ...
Suhyeon Kim   +7 more
wiley   +1 more source

Reverse engineering applied to a lumbar vertebra [PDF]

open access: yes, 2007
Bone studies can be made in vivo or in vitro. However, disadvantages of both traditional techniques call for a compromise between the two. Reverse engineering allows in vitro bone samples to be simulated and analysed in a virtual in vivo environment thus
Lupi, Andre, Sant, Zdenka
core  

Unlock the Walnut: How a Pectin‐Rich Suture Tissue and Moisture‐Driven Crack Formation Induce Shell Splitting and Facilitate Seed Germination

open access: yesAdvanced Functional Materials, EarlyView.
Walnut seeds are enclosed in a remarkably strong shell made of sclerenchyma, separated by a pectin‐rich suture tissue. Different cell shapes and chemical composition of this tissue point to an opening mechanism, which is triggered by cyclic humidity changes.
Sebastian J. Antreich   +3 more
wiley   +1 more source

Revealing the Auxetic Behavior of Biomimetic Multimaterial and Region‐Specific Nanofibrous Fascicle‐Inspired Scaffolds via Synchrotron Multiscale Digital Volume Correlation: Innovative Building Blocks for the Enthesis Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
Enthesis injuries are a worldwide healthcare problem. Biomimetic electrospun enthesis fascicle‐inspired scaffolds, with and without nano‐mineralization are developed. Human Mesenchymal Stromal cells (hMSCs) express the most balanced enthesis markers on the non‐mineralized scaffolds.
Alberto Sensini   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy