Results 81 to 90 of about 1,130,252 (283)
The human brain is arguably the most complex “machine” to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, and both affect the brain’s ...
Luis Irastorza-Valera +3 more
doaj +1 more source
Metallofullerenol Sc3N@C80(OH)18 demonstrates strong radioprotective properties as a scavenger of both short‐ and long‐lived radicals. The study reveals protection of human erythrocytes from γ‐radiation–induced biochemical damage via post‐irradiation removal of primary and secondary reactive oxidants, supported by pulse radiolysis kinetics.
Jacek Grebowski +6 more
wiley +1 more source
Inferring phenomenological models of first passage processes.
Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible.
Catalina Rivera +2 more
doaj +1 more source
Microphysiological Systems of Lymphatics and Immune Organs
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain +2 more
wiley +1 more source
Biomimetic Fibrinogen Nanofiber Scaffolds for Vascular Hematopoietic Stem Cell Niche Engineering
This study presents an advanced in vitro model of the vascular hematopoietic stem cell niche using self‐assembled fibrinogen nanofibers, mimicking the basement membrane in bone marrow (BM) sinusoids. The model supports the coculture of microvascular endothelial cells, stromal cells, and hematopoietic stem and progenitor cells, providing insights into ...
Sophia Lena Meermeyer +4 more
wiley +1 more source
Social interactions between mammalian conspecifics rely heavily on molecular communication via the main and accessory olfactory systems. These two chemosensory systems show high similarity in the organization of information flow along their early stages:
Guy eShpak +3 more
doaj +1 more source
Biophysical Mechanisms Mediating Fibrin Fiber Lysis
The formation and dissolution of blood clots is both a biochemical and a biomechanical process. While much of the chemistry has been worked out for both processes, the influence of biophysical properties is less well understood. This review considers the
N. Hudson
semanticscholar +1 more source
Geometrical Designs in Volumetric Bioprinting to Study Cellular Behaviors in Engineered Constructs
Curvature and spatial confinement guide cell behavior in volumetrically printed 3D constructs. Endothelial cells align and spread along specific geometries, while metastatic osteosarcoma cells proliferate independently of structural cues. Label‐free holographic microscopy captures real‐time, long‐term cell–material interactions, highlighting Gel‐PEG's ...
Julia Simińska‐Stanny +3 more
wiley +1 more source
A Soft Microrobot for Single‐Cell Transport, Spheroid Assembly, and Dual‐Mode Drug Screening
A soft, untethered hydrogel microrobot enables precise single‐cell delivery, self‐assembly into 3D spheroids, and real‐time thermal actuation. Driven by light‐induced convection and embedded with gold nanorods and temperature sensors, the microrobot guides cells, modulates local microenvironments, and supports drug testing.
Philipp Harder +3 more
wiley +1 more source
Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi +4 more
wiley +1 more source

