Results 251 to 260 of about 2,340,402 (343)

Wearable Haptic Feedback Interfaces for Augmenting Human Touch

open access: yesAdvanced Functional Materials, EarlyView.
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel   +3 more
wiley   +1 more source

The Balkan Region and the "Nano Gap": An Underexplored Dimension of In Vitro Biotechnology for Woody Plants. [PDF]

open access: yesPlants (Basel)
Sota V   +14 more
europepmc   +1 more source

Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells

open access: yesAdvanced Functional Materials, EarlyView.
CRISPR machinery in diverse molecular formats (DNA, RNA, and ribonucleic protein) is complexed into nanoparticles with the cell‐friendly arginine‐alanine‐leucine‐alanine (RALA) cell‐penetrating peptide. Nanoparticles are delivered to primary mesenchymal stem cells ex vivo or locally in vivo to facilitate multimodal CRISPR gene editing. This RALA‐CRISPR
Joshua P. Graham   +9 more
wiley   +1 more source

Adalimumab‐Poloxamer Conjugate for Bio‐Better: Enhanced Stability and Function

open access: yesAdvanced Functional Materials, EarlyView.
Antibody‐polymer conjugates, particularly poloxamer conjugates, enhance antibody stability by improving tolerance to physicochemical stress and attenuating proteolysis by proteases. Furthermore, the higher affinity observed with poloxamer conjugation compared to standard PEGylation results in improved therapeutic efficacy in rheumatoid arthritis mouse ...
Jaewon Roh   +3 more
wiley   +1 more source

Editorial: Biotechnologies to recover critical metals. [PDF]

open access: yesFront Bioeng Biotechnol
Villa Gomez DK   +3 more
europepmc   +1 more source

Endocytic Programming via Porous Silicon Nanoparticles Enhances TLR4 Nanoagonist Potency for Macrophage‐Mediated Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy