Results 71 to 80 of about 162,795 (306)
The averaged null energy condition and the black hole interior in string theory
Recently it was shown that folded strings are spontaneously created behind the horizon of the SL(2,R)k/U(1) black hole. Here we show that these folded strings violate the averaged null energy condition macroscopically. We discuss possible consequences of
Karinne Attali, Nissan Itzhaki
doaj +1 more source
Optical Control of the Thermal Conductivity in BaTiO3
Light‐driven manipulation of thermal conductivity in archetypal ferroelectric, BaTiO3, offers a novel and effective approach for the dynamical control of the heat flux, with potential applications in thermal management and phonon‐based logic. Abstract Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter
Claudio Cazorla +4 more
wiley +1 more source
Effective field theory of stochastic diffusion from gravity
Planar black holes in AdS have long-lived quasinormal modes which capture the physics of charge and momentum diffusion in the dual field theory. How should we characterize the effective dynamics of a probe system coupled to the conserved currents of the ...
Jewel K. Ghosh +5 more
doaj +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
Bayesian Black Hole Photogrammetry
We propose an analytic dual-cone accretion model for horizon-scale images of the cores of low-luminosity active galactic nuclei, including those observed by the Event Horizon Telescope (EHT).
Dominic O. Chang +3 more
doaj +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
Engineering Strategies for 2D Layered Tin Halide Perovskite Field‐Effect Transistors
2D halide perovskites are promising candidates for field‐effect transistor (FET) applications due to their high stability and suppressed ion migration in the presence of bulky organic spacers. This review systematically summarizes the optimization engineering strategies of 2D perovskite FETs and future challenges, which provide guidance for developing ...
Shuanglong Wang +4 more
wiley +1 more source
On the origin of black hole paradoxes
Black hole firewall paradox is an inconsistency between four postulates in black hole physics: (1) the unitary evolution in quantum systems, (2) application of the semi-classical field theory in low curvature backgrounds, (3) statistical mechanical ...
Kamal Hajian
doaj +1 more source
Upper bound on the center-of-mass energy of the collisional Penrose process
Following the interesting work of Bañados, Silk, and West (2009) [6], it is repeatedly stated in the physics literature that the center-of-mass energy, Ec.m, of two colliding particles in a maximally rotating black-hole spacetime can grow unboundedly ...
Shahar Hod
doaj +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source

