Results 201 to 210 of about 11,985 (239)
Some of the next articles are maybe not open access.
Journal of the London Mathematical Society, 1994
In this paper we introduce the one-sided sharp functions defined by \[ f_ +^ \# (x) = \sup_{h > 0} {1 \over h} \int^{x + h}_ x \left( f(y) - {1 \over h} \int^{x + 2h}_{x + h} f \right)^ + dy \] and \[ f_ -^ \# (x) = \sup_{h > 0} {1 \over h} \int^ x_{x - h} \left( f(y) - {1 \over h} \int^{x - h}_{x-2h} f \right)^ + dy \] where \(z^ + = \max (z,0)\).
Martín-Reyes, F. J., de la Torre, A.
openaire +2 more sources
In this paper we introduce the one-sided sharp functions defined by \[ f_ +^ \# (x) = \sup_{h > 0} {1 \over h} \int^{x + h}_ x \left( f(y) - {1 \over h} \int^{x + 2h}_{x + h} f \right)^ + dy \] and \[ f_ -^ \# (x) = \sup_{h > 0} {1 \over h} \int^ x_{x - h} \left( f(y) - {1 \over h} \int^{x - h}_{x-2h} f \right)^ + dy \] where \(z^ + = \max (z,0)\).
Martín-Reyes, F. J., de la Torre, A.
openaire +2 more sources
Archiv der Mathematik, 2000
Let \(A\in B(\ell_2)\) having the representation as a matrix \(A=(a(i,j))_{i,j=1}^\infty\).
openaire +1 more source
Let \(A\in B(\ell_2)\) having the representation as a matrix \(A=(a(i,j))_{i,j=1}^\infty\).
openaire +1 more source
BMO and Injectivity of Space Quasiregular Mappings
Mathematische Nachrichten, 1999AbstractIt is shown that if the dilatation tensor G f of a space quasi regular mapping f belongs to the space VMO (vanishing mean oscillation), then f is a local homeomorphism. The same is true If the BMO‐norm of G f is small or if Gf is only close to the VMO space in the BMO‐norm.
Martio, Olli +2 more
openaire +2 more sources
Local to global results for spaces of $${{\mathrm{BMO}}}$$ BMO type
Mathematische Zeitschrift, 2015We study a class of spaces, $$JN_p$$ , related to $${{\mathrm{BMO}}}$$
Niko Marola, Olli Saari
openaire +1 more source
BMO and the Banach Space Approximation Problem
American Journal of Mathematics, 1985Let \(L^{\infty}=L^{\infty}(\partial D)\), \(H^{\infty}=H^{\infty}(D)\), \(BMO(\partial D)=the\) space of functions f on \(\partial D\) with \(\int^{2\pi}_{0}f(t)dt=0\) and \(\| f\|_{BMO}=\sup \{(\frac{1}{| I|}\int_{I}| f-f_ I|^ 2dt)^{1/2}:\) I an \(arc\subset \partial D\}
openaire +2 more sources
Multipliers between $ BMO $ Spaces on Open Unit Ball
Integral Equations and Operator Theory, 2003Let \(B\) be the unit ball in \(\mathbb R^n\).
Wang, James L., Wu, Zhijian
openaire +2 more sources
Real interpolation between martingale hardy and BMO spaces
Acta Mathematica Sinica, English Series, 2012The usual interpolation space \((A_0,A_1)_{\theta,q}\) is defined as the space of all functions \(f\) in \(A_0+A_1\) for which \[ { \| f \|}_{{(A_0,A_1)}_{\theta ,q}}:= \left( \int_0^\infty \left(t^{- \theta}K(t,f,A_0,A_1) \right) ^q \, {{dt} \over {t}} \right)^{1/q} < \infty \] where \(K(t,f,A_0,A_1) := \inf_{f=f_0+f_1} \left\{ \|f_0\|_{A_0} + t\|f_1\|
Ren, Yan Bo, Guo, Tie Xin
openaire +1 more source

