Results 201 to 210 of about 11,985 (239)
Some of the next articles are maybe not open access.

One-Sided BMO Spaces

Journal of the London Mathematical Society, 1994
In this paper we introduce the one-sided sharp functions defined by \[ f_ +^ \# (x) = \sup_{h > 0} {1 \over h} \int^{x + h}_ x \left( f(y) - {1 \over h} \int^{x + 2h}_{x + h} f \right)^ + dy \] and \[ f_ -^ \# (x) = \sup_{h > 0} {1 \over h} \int^ x_{x - h} \left( f(y) - {1 \over h} \int^{x - h}_{x-2h} f \right)^ + dy \] where \(z^ + = \max (z,0)\).
Martín-Reyes, F. J., de la Torre, A.
openaire   +2 more sources

Non-commutative BMO space

Archiv der Mathematik, 2000
Let \(A\in B(\ell_2)\) having the representation as a matrix \(A=(a(i,j))_{i,j=1}^\infty\).
openaire   +1 more source

BMO and Injectivity of Space Quasiregular Mappings

Mathematische Nachrichten, 1999
AbstractIt is shown that if the dilatation tensor G f of a space quasi regular mapping f belongs to the space VMO (vanishing mean oscillation), then f is a local homeomorphism. The same is true If the BMO‐norm of G f is small or if Gf is only close to the VMO space in the BMO‐norm.
Martio, Olli   +2 more
openaire   +2 more sources

Local to global results for spaces of $${{\mathrm{BMO}}}$$ BMO type

Mathematische Zeitschrift, 2015
We study a class of spaces, $$JN_p$$ , related to $${{\mathrm{BMO}}}$$
Niko Marola, Olli Saari
openaire   +1 more source

BMO and the Banach Space Approximation Problem

American Journal of Mathematics, 1985
Let \(L^{\infty}=L^{\infty}(\partial D)\), \(H^{\infty}=H^{\infty}(D)\), \(BMO(\partial D)=the\) space of functions f on \(\partial D\) with \(\int^{2\pi}_{0}f(t)dt=0\) and \(\| f\|_{BMO}=\sup \{(\frac{1}{| I|}\int_{I}| f-f_ I|^ 2dt)^{1/2}:\) I an \(arc\subset \partial D\}
openaire   +2 more sources

Multipliers between $ BMO $ Spaces on Open Unit Ball

Integral Equations and Operator Theory, 2003
Let \(B\) be the unit ball in \(\mathbb R^n\).
Wang, James L., Wu, Zhijian
openaire   +2 more sources

Real interpolation between martingale hardy and BMO spaces

Acta Mathematica Sinica, English Series, 2012
The usual interpolation space \((A_0,A_1)_{\theta,q}\) is defined as the space of all functions \(f\) in \(A_0+A_1\) for which \[ { \| f \|}_{{(A_0,A_1)}_{\theta ,q}}:= \left( \int_0^\infty \left(t^{- \theta}K(t,f,A_0,A_1) \right) ^q \, {{dt} \over {t}} \right)^{1/q} < \infty \] where \(K(t,f,A_0,A_1) := \inf_{f=f_0+f_1} \left\{ \|f_0\|_{A_0} + t\|f_1\|
Ren, Yan Bo, Guo, Tie Xin
openaire   +1 more source

Home - About - Disclaimer - Privacy