Results 291 to 300 of about 1,124,156 (362)

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Nf2/FGFR1/AKT axis directs cranial neural crest-derived skull morphogenesis via collagen synthesis and trafficking. [PDF]

open access: yesJCI Insight
Huang Y   +9 more
europepmc   +1 more source

Polymer‐Incorporated Mechanically Compliant Carbon Nanotube Microelectrode Arrays for Multichannel Neural Signal Recording

open access: yesAdvanced Functional Materials, EarlyView.
This work presents a soft microelectrode array based on vertically aligned carbon nanotube (CNT) forests, combining high conductivity with mechanical softness. A densification process and air‐pressure‐assisted flexibilization improve structural integrity, ensuring stable insertion and reduced inflammation.
Hyeonhee Roh   +8 more
wiley   +1 more source

Bone Grafting

open access: yesInternational Journal of Clinical Practice, 1965
openaire   +4 more sources

Polaronic and Electrochemical Signatures in Group IVB (Ti, Zr, Hf) Oxides: Unified SKP–DFT Insights for Tunable Transport in Energy and Electronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes   +3 more
wiley   +1 more source

Stochastic parametric skeletal dosimetry model for humans: Anatomical-morphological basis and parameter evaluation. [PDF]

open access: yesPLoS One
Tolstykh EI   +5 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy