Results 101 to 110 of about 226,513 (310)

Visible Light Induced DLP‐Printed Oxygen‐Releasing TPMS Scaffolds Mitigate Early Hypoxia in Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
Visible light‐induced digital light processing 3D printed Primitive‐triply periodic minimal surface hydrogels embed CaO2–Si core–shell nanoparticles to deliver short‐term oxygen during the avascular window. The scaffolds maintain cytocompatibility, elevate osteopontin in vitro, and enhance calvarial defect repair in vivo without toxicity.
Anastasia B. Timoshenko   +11 more
wiley   +1 more source

Geometry‐Guided Osteogenesis in Bone‐on‐a‐Chip Systems Using Triply Periodic Minimal Surface Scaffolds

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a bone‐on‐a‐chip platform incorporating TPMS scaffolds to study geometry‐dependent osteogenesis under dynamic flow. By tuning pore shape and solidity, it precisely controls mechanical cues, revealing how topological features and shear stress affect osteogenic differentiation and matrix formation.
Donggyu Kim   +5 more
wiley   +1 more source

Clinical Use of S53P4 Bioactive Glass in the Treatment of Bone Defects and Infected Bone: A Systematic Review of the Quality of Clinical Outcomes and A Grade Assessment

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioactive glass (BAG) S53P4 is a synthetic bone substitute. Clinically it has been used in the treatment of benign bone tumor surgery, in spine surgery, in trauma surgery, in frontal sinus surgery, in diabetic foot osteomyelitis surgery, in mastoid surgery, in oral and maxillofacial surgery in more than 4000 patients, with excellent clinical long‐term ...
Lindfors CES, Arts JJC, Lindfors NC
wiley   +1 more source

Intrafibrillar Mineralization and Immunomodulatory for Synergetic Enhancement of Bone Regeneration via Calcium Phosphate Nanocluster Scaffold (Adv. Healthcare Mater. 12/2023) [PDF]

open access: bronze, 2023
Yanyan Zhou   +11 more
openalex   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

open access: yesEinstein (São Paulo)
Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status.
Edil de Albuquerque Rodrigues Filho   +6 more
doaj   +1 more source

Harnessing Advances in Bone Tissue Engineering for Design of Bone‐on‐Chip Systems

open access: yesAdvanced Healthcare Materials, EarlyView.
Bone‐on‐chip (BoC) systems demonstrate significant potential as next‐generation models to study human (patho)physiology and evaluate new therapies. However, progress toward functional, human‐like BoCs has been hindered by the structural and functional complexity of bone. This perspective discusses how insights from bone tissue engineering can guide BoC
Farhad Sanaei   +6 more
wiley   +1 more source

Preparation and physicochemical characterization of whitlockite/PVA/Gelatin composite for bone tissue regeneration

open access: yesFrontiers in Chemistry
This work used a straightforward solvent casting approach to synthesize bone whitlockite (WH) based PVA/Gelatin composites. WH nanoparticles (NPs) were synthesized using the wet precipitation method, followed by their addition into the PVA/Gelatin matrix
Sadaf Batool   +2 more
doaj   +1 more source

Platelet Lysate–Enriched Human Induced Pluripotent Stem Cell–Derived Chondrocyte Sheets for Bone Defect Repair via Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
Human iPSC‐derived hypertrophic chondrocyte sheet promotes bone regeneration. Abstract Bone defects are a major clinical challenge, primarily owing to the limited self‐healing capacity of bones and the high risk of complications associated with conventional treatment strategies.
Yiwei Chen   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy