Results 181 to 190 of about 1,720,412 (231)
Some of the next articles are maybe not open access.
1992
The simplest frictionless contact problem of the class defined by equations (29.3–29.6) is that in which the contact area A is the circle 0 < r < a and the indenter is axisymmetric, in which case we have to determine a harmonic function φ(r, z) to satisfy the mixed boundary conditions $$\frac{{\partial \varphi }}{{\partial z}} = - \frac{\mu }{{(1 -
openaire +1 more source
The simplest frictionless contact problem of the class defined by equations (29.3–29.6) is that in which the contact area A is the circle 0 < r < a and the indenter is axisymmetric, in which case we have to determine a harmonic function φ(r, z) to satisfy the mixed boundary conditions $$\frac{{\partial \varphi }}{{\partial z}} = - \frac{\mu }{{(1 -
openaire +1 more source
Elementary Boundary Value Problems
American Journal of Physics, 1966The solution of a particular elementary boundary value problem is presented. A new set of orthogonal functions is needed. Their properties are discussed briefly. A comment is made about the number of independent solutions of a rth order equation in an n dimensional space. The number is rn and not r·n.
openaire +1 more source
On a Multidimensional Boundary Value Problem
Differential Equations, 2005The author considers the existence of a solution for a nonlinear boundary value problem of the form \[ \ddot z_j+ \sum^m_{i=1} b_{ij}(z)\dot z_i\dot z_j= 0,\quad z_j(0)= 0,\quad z_j(1)= 1,\quad j= 1,\dots, m, \] with the additional condition \(0\leq z_j(s)\leq 1\), \(0\leq s\leq 1\), \(j= 1,\dots, m\), where the \(b_{ij}(z)\) are smooth scalar ...
openaire +2 more sources
2011
This chapter deals with Newton methods for boundary value problems (BVPs) in nonlinear partial differential equations (PDEs). There are two principal approaches: (a) finite dimensional Newton methods applied to given systems of already discretized PDEs, also called discrete Newton methods, and (b) function space oriented inexact Newton methods directly
openaire +1 more source
This chapter deals with Newton methods for boundary value problems (BVPs) in nonlinear partial differential equations (PDEs). There are two principal approaches: (a) finite dimensional Newton methods applied to given systems of already discretized PDEs, also called discrete Newton methods, and (b) function space oriented inexact Newton methods directly
openaire +1 more source
General Boundary-Value Problems
1992Section 5.1 introduces the general elliptic linear differential equation of second order together with the Dirichlet boundary values. An important statement is the maximum-minimum principle in §5.1.2. In §5.1.3 sufficient conditions for the uniqueness of the solution and the continuous dependence on the data are proved.
openaire +1 more source
ANNALI DELL UNIVERSITA DI FERRARA, 1996
Summary: The author gives an existence result of a boundary value problem for integro-differential equations.
openaire +2 more sources
Summary: The author gives an existence result of a boundary value problem for integro-differential equations.
openaire +2 more sources
1984
In the previous chapters, we studied various kinds of questions concerning the initial value problem. We now propose to investigate other types of problems, in which the desired solution depends either on the values that it assumes at various points in its domain or on geometrical conditions (e.g., intersecting two given curves or being tangent to two ...
L. C. Piccinini +2 more
openaire +1 more source
In the previous chapters, we studied various kinds of questions concerning the initial value problem. We now propose to investigate other types of problems, in which the desired solution depends either on the values that it assumes at various points in its domain or on geometrical conditions (e.g., intersecting two given curves or being tangent to two ...
L. C. Piccinini +2 more
openaire +1 more source
1988
When a person begins the study of ordinary differential equations, he is usually confronted first by initial value problems, i.e. a differential equation plus conditions which the solution must satisfy at a given point x = x0.
Mayer Humi, William Miller
openaire +1 more source
When a person begins the study of ordinary differential equations, he is usually confronted first by initial value problems, i.e. a differential equation plus conditions which the solution must satisfy at a given point x = x0.
Mayer Humi, William Miller
openaire +1 more source
2017
This chapter is devoted to boundary value problems for ordinary differential equations. It begins with analysis of the existence and uniqueness of solutions to these problems, and the effect of perturbations to the problem. The first numerical approach is the shooting method. This is followed by finite differences and collocation. Finite elements allow
openaire +1 more source
This chapter is devoted to boundary value problems for ordinary differential equations. It begins with analysis of the existence and uniqueness of solutions to these problems, and the effect of perturbations to the problem. The first numerical approach is the shooting method. This is followed by finite differences and collocation. Finite elements allow
openaire +1 more source
Navigating financial toxicity in patients with cancer: A multidisciplinary management approach
Ca-A Cancer Journal for Clinicians, 2022Grace Li Smith +2 more
exaly

