Results 91 to 100 of about 101,401 (310)

Charge‐Induced Morphing Gels for Bioinspired Actuation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu   +4 more
wiley   +1 more source

Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler [PDF]

open access: diamond, 2017
Jian Li   +5 more
openalex   +1 more source

High‐Entropy Perovskite Nanofibers for Bifunctional Air Electrodes in Reversible Protonic Ceramic Electrochemical Cells

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy perovskite nanofibers serve as robust and active bifunctional air electrodes in reversible protonic ceramic electrochemical cells. Their compositional complexity stabilizes the lattice, enriches oxygen vacancies, and accelerates surface exchange.
Hyeonggeun Kim   +4 more
wiley   +1 more source

Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3

open access: yesAdvanced Functional Materials, EarlyView.
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta   +13 more
wiley   +1 more source

A Bilayer High-Temperature Dielectric Film with Superior Breakdown Strength and Energy Storage Density. [PDF]

open access: yesNanomicro Lett, 2023
Ping JB   +6 more
europepmc   +1 more source

Thickness‐Dependent Skyrmion Evolution in Fe3GeTe2 During Magnetization Reversal

open access: yesAdvanced Functional Materials, EarlyView.
Thickness‐ and field‐dependent magnetic domain behavior in 2D van der Waals Fe3GeTe2 is studied using Lorentz TEM and micromagnetic simulations. A patch‐like domain phase evolves from skyrmions during magnetization reversal, and step edges between thickness regions act as pinning sites.
Jennifer Garland   +9 more
wiley   +1 more source

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics

open access: yesNature Communications, 2019
Polymer dielectrics are promising for high-density energy storage but dielectric breakdown is poorly understood. Here, a phase-field model is developed to investigate electric, thermal, and mechanical effects in the breakdown process for a range of ...
Zhong-Hui Shen   +7 more
doaj   +1 more source

Laser‐Based Sculpturing of Embedded Ultrathin Metal‐Oxide Nanopores for Enhanced Biomolecular Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Controlled laser‐drilling of embedded HfO2 membranes creates three layer nanopores with Gaussian‐shaped cavities sculptured in the supporting layers. These embedded solid‐state nanopores slow DNA translocation by 12‐fold compared to SiNx pores, enabling high‐resolution, label‐free detection of short DNAs, RNAs, and proteins.
Jostine Joby   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy