Results 211 to 220 of about 113,231 (329)

Rainbow Photonic Crystals: Self‐Assembly of Carbohydrate Bottlebrushes Block Copolymers

open access: yesAdvanced Materials, EarlyView.
Full‐color reflective 1D photonic crystals, capable of a tunable, responsive, and reversible color with high repeatability, are created from the self‐assembly of carbohydrate‐based brush block copolymers (BR01‐04). Abstract Tunable and responsive photonic crystal systems are the subject of great research interest owing to their ability to actively ...
Hong Li   +6 more
wiley   +1 more source

Molecular Surface Engineering of Sulfide Electrolytes with Enhanced Humidity Tolerance for Robust Lithium Metal All‐Solid‐State Batteries

open access: yesAdvanced Materials, EarlyView.
It is demonstrated that the electrochemical, interfacial, and humidity stability of halide‐doped sulfide electrolytes (LPSClBr) is significantly enhanced by an organic surface coating using octadecyl phosphonic acid (OPA) and its lithiated form (Li‐OPA). This single‐step strategy enables robust interfacial protection, supports lithium metal anodes, and
Laras Fadillah   +9 more
wiley   +1 more source

Interaction of Br with Cu(100) surface: adsorption and thermodynamics stability study. [PDF]

open access: yesRSC Adv
Marashdeh A   +6 more
europepmc   +1 more source

Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using N-Bromosuccinimide

open access: gold, 2018
David A. Rogers   +6 more
openalex   +1 more source

Hydrogel Thermostat Inspired by Photoprotective Foliage Using Latent and Radiative Heat Control

open access: yesAdvanced Materials, EarlyView.
Guided by Populus alba foliage, this hydrogel latent‐radiative thermostat (LRT) actively balances latent and radiative heat fluxes. An LRT switches solar reflectance, maintains high mid‐IR emissivity, and reversibly evaporates/regenerates water, while titanium oxide (TiO2) nanoparticles toughen the film.
Se‐Yeon Heo   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy