Results 81 to 90 of about 3,331,715 (353)
AgCrP2S6 reveals a momentum‐indirect band edge (≈1.35 eV) and chain‐locked linear dichroism: the first direct transitions emerge at 1.6–1.8 eV for E||a. Resonant Raman and photoemission corroborate this assignment. In ACPS/graphene heterostructures, photocurrent turns on above ≈1.5 eV and follows the same polarization selection rules (anisotropy ≈0.53),
Oleksandr Volochanskyi +9 more
wiley +1 more source
Mode coupling, bi-stability, and spectral broadening in buckled nanotube resonators [PDF]
Sharon Rechnitz +4 more
openalex +1 more source
Tailored thermo‐mechanical properties of shape memory polymer composites enable large reversible deformation as well as high actuation speed. Moreover, a structural design with curvature in the transverse direction achieves sub‐second actuation on heating and a larger recovery ratio on cooling. Finally, these newly developed smart two‐way actuators can
Dajeong Kang +6 more
wiley +1 more source
A Bioresorbable Neural Interface for On‐Demand Thermal Pain Block
Bioresorbable, implantable neural electronics provide dynamic, on‐demand thermal modulation of peripheral nerves for safe, drug‐free pain relief. A microscale thin‐film heater and temperature sensor embedded within biodegradable encapsulants enable precise temperature control via real‐time feedback.
Jeonghwan Park +23 more
wiley +1 more source
Cuttlebone‐inspired metamaterials exploit a septum‐wall architecture to achieve excellent mechanical and functional properties. This review classifies existing designs into direct biomimetic, honeycomb‐type, and strut‐type architectures, summarizes governing design principles, and presents a decoupled design framework for interpreting multiphysical ...
Xinwei Li, Zhendong Li
wiley +1 more source
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash +4 more
wiley +1 more source
Compression‐Tension‐Asymmetry and Stiffness Nonlinearity of Collagen‐Matrigel Composite Hydrogels
Self‐assembled collagen hydrogel matrices are widely used in tissue engineering applications. These matrices stiffen and contract laterally under tension due to fiber alignment and soften and collapse under compression due to fiber buckling. It is demonstrated that filler materials, such as Matrigel, linearize the mechanical behavior of collagen ...
David Böhringer +9 more
wiley +1 more source
This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel.
Sang-Rai Cho +5 more
doaj +1 more source
Modelling Initial Imperfections using Scaled Buckling Modes: A Strain Energy and Entropy Approach
Zdeněk Kala
openalex +2 more sources
Smart Catheters for Diagnosis, Monitoring, and Therapy
This study presents a comprehensive review of smart catheters, an emerging class of medical devices that integrate embedded sensors, robotics, and communication systems, offering increased functionality and complexity to enable real‐time health monitoring, diagnostics, and treatment. Abstract This review explores smart catheters as an emerging class of
Azra Yaprak Tarman +12 more
wiley +1 more source

