Results 91 to 100 of about 70,035 (287)

Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes

open access: yes, 2012
The short diffusion lengths in insertion battery nanoparticles render the capacitive behavior of bounded diffusion, which is rarely observable with conventional larger particles, now accessible to impedance measurements. Coupled with improved geometrical
Bazant, M. Z., Song, J.
core   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

A nanomechanical resonator shuttling single electrons at radio frequencies

open access: yes, 2000
We observe transport of electrons through a metallic island on the tip of a nanomechanical pendulum. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum.
A. Erbe   +15 more
core   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Mechanotransducing Organic Electrochemical Diode for Crosstalk‐Inhibited Artificial Skin

open access: yesAdvanced Functional Materials, EarlyView.
An innovative approach is presented to a stretchable mechanotransducing diode that unifies rectification and tactile‐sensing functionality. This approach enables to fabricate the diode that maintains a large rectification ratio (5 × 102) at a high operational frequency (100 Hz).
Taeyeong Kim   +7 more
wiley   +1 more source

Three-Phase High Power Underwater Capacitive Wireless Power Transfer System for Autonomous Underwater Vehicles

open access: yesJournal of Marine Science and Engineering
This paper proposes a 1000 W high-frequency three-phase power inversion underwater capacitive wireless power transfer (UCWPT) system for power delivery to autonomous underwater vehicles (AUVs). The multi-phase coupling structure is designed as a columnar
Lei Yang   +6 more
doaj   +1 more source

Solar Heating Enhanced Selective Recovery of Metal Ions Through Flowing Electrodes Enabled by Hybrid Carbon Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
A new electrochemical system based on a microporous hybrid of carbon nanoplatelets and nanotubes to selectively capture Ni2+ from wastewater is constructed. The system temperature rises rapidly when irradiated with sunlight, which enhances the Ni2+ removal rate by 250% and the selectivity by 53%, and the energy consumption is also reduced by 51 ...
Ziquan Wang   +11 more
wiley   +1 more source

Alkali Ion‐Incorporated HfO2 Dielectrics for Reconfigurable Neuromorphic Computing

open access: yesAdvanced Functional Materials, EarlyView.
This work presents an indium gallium zinc oxide (IGZO) transistor with an alkali cation‐integrated hafnium dioxide (HfO2) dielectric exhibiting synaptic behavior via ion retention. The solution‐based film fabrication strategy overcomes the limitations of atomic layer deposition (ALD) and precursor coating, enabling the control of synaptic retention ...
Seung Yeon Ki   +7 more
wiley   +1 more source

EXPLORING RECENT TRENDS AND CHALLENGES IN WIRELESS POWER TECHNOLOGY [PDF]

open access: yesProceedings on Engineering Sciences
Wireless power technology has long been a subject of significant discussion due to its potential to transform energy transfer methods in various applications, ranging from consumer electronics to medical devices.
Lakshay Arora   +3 more
doaj   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy