Results 141 to 150 of about 29,311 (260)
Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das +8 more
wiley +1 more source
This study demonstrates a Maya blue‐inspired hybrid solar evaporator using commercial black acrylic paint, achieving 98% solar‐thermal conversion efficiency and 2.39 kg m−2 h−1 water evaporation rate through a durable, hydrophilic organic–inorganic structure that enables scalable, cost‐effective desalination and wastewater purification.
Dao Thi Dung +5 more
wiley +1 more source
4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner +12 more
wiley +1 more source
It is reported that the ferroelectric switching behavior of rhombohedral (3R) phase transition metal dichalcogenide (TMD) bilayers strongly depends on their domain structures. Single‐domain TMDs (SD‐TMDs) with domain‐wall‐free structures exhibit robust and stable polarization switching, whereas poly‐domain TMDs (PD‐TMDs) with randomly distributed ...
Ji‐Hwan Baek +8 more
wiley +1 more source
Capsule networks as recurrent models of grouping and segmentation. [PDF]
Doerig A +4 more
europepmc +1 more source
Towards Understanding Capsule Networks
In this thesis capsule networks are investigated, both theoretically and empirically. The properties of the dynamic routing [42] algorithm proposed for capsule networks, as well as a routing algorithm in a follow-up paper by Wang et al. [50] are thoroughly investigated.
openaire +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint +6 more
wiley +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle +2 more
wiley +1 more source

