Results 91 to 100 of about 454,142 (307)

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

From In‐Silico Optimized Microfabrication to Experimental Validation: Engineering a Tridimensional Epi‐Intraneural Interface

open access: yesAdvanced Functional Materials, EarlyView.
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti   +14 more
wiley   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

Factors predictive for delayed enhancement in cardiac resonance imaging in patients undergoing catheter ablation of premature ventricular complexes

open access: gold, 2020
Michael Ghannam   +11 more
openalex   +1 more source

Cardiac Magnetic Resonance Imaging Findings in 20-year Survivors of Mediastinal Radiotherapy for Hodgkin's Disease [PDF]

open access: bronze, 2010
Wolfram Machann   +9 more
openalex   +1 more source

PRELIVE: A Framework for Predicting Lipid Nanoparticles In Vivo Efficacy and Reducing Reliance on Animal Testing

open access: yesAdvanced Functional Materials, EarlyView.
PREdicting LNP In Vivo Efficacy (PRELIVE) framework enables the prediction of lipid nanoparticle (LNPs) organ‐specific delivery through dual modeling approaches. Composition‐based models using formulation parameters and protein corona‐based models using biological fingerprints both achieve high predictive accuracy across multiple organs.
Belal I. Hanafy   +3 more
wiley   +1 more source

Myocardial Infiltration in Primary Mediastinal B-Cell Lymphoma Detected by Cardiac Magnetic Resonance Imaging

open access: diamond, 2023
Verawati Sutedjo   +4 more
openalex   +2 more sources

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

MAGTWIST: A Magnetically‐Driven Rotary Actuator Using a Traveling‐Wave With Integrated Stiffness Tunability

open access: yesAdvanced Functional Materials, EarlyView.
MAGTWIST: A compact magnetic rotary actuator, enabling smooth, stepless rotation, and on‐demand locking. Inspired by peristalsis, a soft polymer belt generates a traveling‐wave, enabling 270° rotation when heated. Cooling stiffens the belt, locking it in position and enabling it to withstand high loads.
Simon Frieler   +3 more
wiley   +1 more source

Biomaterials‐Based Hydrogel with Superior Bio‐Mimetic Ionic Conductivity and Tissue‐Matching Softness for Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
By mimicking the ion‐accelerating effect of ion channel receptors in neuron membranes, a biomaterials‐based ionic hydrogel (BIH) is developed, which offers a high ionic conductivity of 7.04 S m−1, outperforming conventional chitosan, cellulose, agarose, starch, and gelatin based ionic hydrogels.
Baojin Chen   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy