Results 71 to 80 of about 344,538 (261)
Mechanically Stable and Tunable Photoactivated Peptide‐Based Hydrogels for Soft Tissue Adhesion
A collagen‐like peptide hydrogel platform is developed using supramolecular self‐assembly and light‐triggered crosslinking. It creates mechanically stable, tunable hydrogels with cytocompatibility and biodegradability, making them potential soft tissue adhesives.
Alex Ross +8 more
wiley +1 more source
Comparison of two cardiac output monitors, qCO and LiDCO, during general anesthesia [PDF]
Background: Optimization of cardiac output (CO) has been evidenced to reduce postoperative complications and to expedite the recovery. Likewise, CO and other dynamic cardiac parameters can describe the systemic blood flow and tissue oxygenation state and
Escrivá, Jesús +6 more
core +1 more source
Tissue Engineered Human Elastic Cartilage From Primary Auricular Chondrocytes for Ear Reconstruction
Despite over three decades of research, no tissue‐engineered solution for auricular reconstruction in microtia patients has reached clinical translation. The key challenge lies in generating functional elastic cartilage ex vivo. Here, we integrate synergistic cell‐biomaterial strategies to engineer auricular grafts with mechanical and histological ...
Philipp Fisch +13 more
wiley +1 more source
Mechanical and Electrical Phenotype of hiPSC‐Cardiomyocytes on Fibronectin‐Based Hydrogels
We introduce fibronectin‐based PEG hydrogels with controlled rigidity to enable the culture of iPSC‐derived cardiomyocytes. These substrates offer an alternative to the current culture of these cells on fibronectin‐coated glass, providing enhanced structural and functional behavior. The system provides a more physiologically relevant platform to assess
Ana Da Silva Costa +8 more
wiley +1 more source
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans +11 more
wiley +1 more source
Machine learning techniques typically rely on large datasets to create accurate classifiers. However, there are situations when data is scarce and expensive to acquire.
Costabal, Francisco Sahli +3 more
core +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Multi-Estimator Full Left Ventricle Quantification through Ensemble Learning
Cardiovascular disease accounts for 1 in every 4 deaths in United States. Accurate estimation of structural and functional cardiac parameters is crucial for both diagnosis and disease management.
C Petitjean +8 more
core +1 more source
Aerosol jet printing enables rapid, customizable fabrication of flexible, fully gold multi‐electrode arrays (MEAs) for organotypic bioelectronic interfaces. The printed MEAs exhibit stable electrochemical performance, cytocompatibility, and functionality in recording and stimulation, including integration with 3D‐printed constructs.
Ernest Cheah +7 more
wiley +1 more source
Computational Modeling Meets 3D Bioprinting: Emerging Synergies in Cardiovascular Disease Modeling
Emerging advances in three‐dimensional bioprinting and computational modeling are reshaping cardiovascular (CV) research by enabling more realistic, patient‐specific tissue platforms. This review surveys cutting‐edge approaches that merge biomimetic CV constructs with computational simulations to overcome the limitations of traditional models, improve ...
Tanmay Mukherjee +7 more
wiley +1 more source

