Results 191 to 200 of about 518,643 (317)

Mortalin and PINK1/Parkin‐Mediated Mitophagy Represent Ovarian Cancer‐Selective Targets for Drug Development

open access: yesAdvanced Science, EarlyView.
Ovarian cancer patients with high levels of mortalin protein in their tumors have worse survival. The investigational drug SHetA2 interferes with mortalin's support of mitochondria. The resulting mitochondrial damage causes a process called mitophagy that contributes to how SHetA2 kills cancer cells. Noncancerous cells repair their mitochondria through
Vishal Chandra   +9 more
wiley   +1 more source

Candida endocarditis after cardiac surgery

open access: bronze, 1973
Mildred S. Seelig   +4 more
openalex   +1 more source

Inhibition of AMPKα Pathway by Podocyte GOLM1 Exacerbates Diabetic Nephrology in Mice

open access: yesAdvanced Science, EarlyView.
Podocyte Golgi membrane protein 1 interacts with epidermal growth factor receptor to inhibit peroxisome proliferator activated receptor γ, and then inactivates adenosine monophosphate activated protein kinase α pathway, which facilitates diabetes‐related inflammation, oxidative damage, apoptosis, and renal dysfunction.
Peng Xu   +14 more
wiley   +1 more source

Hepatitis patients undergoing cardiac surgery: A single-center retrospective study. [PDF]

open access: yesMedicine (Baltimore)
Ju JL   +6 more
europepmc   +1 more source

Neuropathologic complications of cardiac surgery

open access: bronze, 1971
Mary Jane Aguilar   +2 more
openalex   +1 more source

Engineering Neutrophil Vesicles for Synergistic Protection against Ischemia/Reperfusion Injury after Lung Transplant

open access: yesAdvanced Science, EarlyView.
Engineered neutrophil‐derived vesicles (SOD2‐Fer‐1@CVs) co‐delivering antioxidant and ferroptosis‐inhibitory agents enable inflammation‐targeted, ROS‐responsive therapy for ischemia–reperfusion injury in lung transplantation. Synergizing with ex vivo lung perfusion, this strategy alleviates oxidative stress and inflammation, restores vascular integrity,
Hao‐Xiang Yuan   +10 more
wiley   +1 more source

Mitochondrial Transplantation Augments the Reparative Capacity of Macrophages Following Myocardial Injury

open access: yesAdvanced Science, EarlyView.
Mitochondrial transplantation induces macrophage polarization toward an anti‐inflammatory M2 phenotype, enhances their reparative capacities, and facilitates mitochondrial transfer to cardiomyocytes, collectively promoting tissue repair and functional recovery post‐myocardial infarction.
Yuning Zhang   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy