Results 1 to 10 of about 14,419 (204)

A Cornucopia of Carnot Groups in Low Dimensions [PDF]

open access: goldAnalysis and Geometry in Metric Spaces, 2022
Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating.
Le Donne Enrico, Tripaldi Francesca
doaj   +2 more sources

Convex Hull Property and Exclosure Theorems for H-Minimal Hypersurfaces in Carnot Groups [PDF]

open access: yesAnalysis and Geometry in Metric Spaces, 2016
In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups.
Montefalcone Francescopaolo
doaj   +3 more sources

On the H.-Q. Li inequality on step-two Carnot groups [PDF]

open access: diamondComptes Rendus. Mathématique, 2023
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q.
Zhang, Ye
doaj   +2 more sources

The Parabolic Infinite-Laplace Equation in Carnot groups [PDF]

open access: bronze, 2014
By employing a Carnot parabolic maximum principle, we show existence-uniqueness of viscosity solutions to a class of equations modeled on the parabolic infinite Laplace equation in Carnot groups.
Bieske, Thomas, Martin, Erin
core   +3 more sources

Sharp measure contraction property for generalized H-type Carnot groups [PDF]

open access: green, 2017
We prove that H-type Carnot groups of rank $k$ and dimension $n$ satisfy the $\mathrm{MCP}(K,N)$ if and only if $K\leq 0$ and $N \geq k+3(n-k)$. The latter integer coincides with the geodesic dimension of the Carnot group.
Bonfiglioli A.   +4 more
core   +4 more sources

Identifying 1-rectifiable measures in Carnot groups

open access: yesAnalysis and Geometry in Metric Spaces, 2023
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R.
Badger Matthew, Li Sean, Zimmerman Scott
doaj   +1 more source

Exceptional families of measures on Carnot groups

open access: yesAnalysis and Geometry in Metric Spaces, 2023
We study the families of measures on Carnot groups that have vanishing pp-module, which we call Mp{M}_{p}-exceptional families. We found necessary and sufficient Conditions for the family of intrinsic Lipschitz surfaces passing through a common point to ...
Franchi Bruno, Markina Irina
doaj   +1 more source

Sharp Hardy Identities and Inequalities on Carnot Groups

open access: yesAdvanced Nonlinear Studies, 2021
In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups ...
Flynn Joshua, Lam Nguyen, Lu Guozhen
doaj   +1 more source

Hilbert-Haar coordinates and Miranda's theorem in Lie groups

open access: yesBruno Pini Mathematical Analysis Seminar, 2020
We study the interior regularity of solutions to a class of quasilinear equations of non-degenerate p-Laplacian type on Lie groups that admit a system of Hilbert-Haar coordinates. These are coordinates with respect to which every linear function has zero
András Domokos, Juan J. Manfredi
doaj   +1 more source

Harnack inequality for fractional sub-Laplacians in Carnot groups [PDF]

open access: yes, 2013
In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a technique recently introduced by Caffarelli and Silvestre ...
A Bonfiglioli   +31 more
core   +1 more source

Home - About - Disclaimer - Privacy