Results 21 to 30 of about 14,219 (239)
Notions of Convexity in Carnot Groups [PDF]
The aim of this interesting paper is to study appropriate notions of convexity in the setting of Carnot groups \(G\). First, the notion of strong \(H\)-convexity is examined. Some arguments showing that the concept is to restrictive are presented. Then the notion of weakly \(H\)-convex functions is defined.
Duy Minh Nhieu+3 more
openaire +5 more sources
Identifying 1-rectifiable measures in Carnot groups
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R.
Badger Matthew, Li Sean, Zimmerman Scott
doaj +1 more source
Sharp Hardy Identities and Inequalities on Carnot Groups
In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups ...
Flynn Joshua, Lam Nguyen, Lu Guozhen
doaj +1 more source
On the H.-Q. Li inequality on step-two Carnot groups
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q.
Zhang, Ye
doaj +1 more source
Sharp measure contraction property for generalized H-type Carnot groups [PDF]
We prove that H-type Carnot groups of rank $k$ and dimension $n$ satisfy the $\mathrm{MCP}(K,N)$ if and only if $K\leq 0$ and $N \geq k+3(n-k)$. The latter integer coincides with the geodesic dimension of the Carnot group.
Bonfiglioli A.+4 more
core +2 more sources
Harnack inequality for fractional sub-Laplacians in Carnot groups [PDF]
In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a technique recently introduced by Caffarelli and Silvestre ...
A Bonfiglioli+31 more
core +1 more source
Hilbert-Haar coordinates and Miranda's theorem in Lie groups
We study the interior regularity of solutions to a class of quasilinear equations of non-degenerate p-Laplacian type on Lie groups that admit a system of Hilbert-Haar coordinates. These are coordinates with respect to which every linear function has zero
András Domokos, Juan J. Manfredi
doaj +1 more source
Conformal maps of Carnot groups
If f is a conformal mapping defined on a connected open subset of a Carnot group G, then either f is the composition of a translation, a dilation and an isometry, or G is the nilpotent Iwasawa component of a real rank 1 simple Lie group S, and f arises from the action of S on G, viewed as an open subset of S/P, where P is a parabolic subgroup of G and ...
Cowling, MG, Ottazzi, A
openaire +5 more sources
Blowups and blowdowns of geodesics in Carnot groups
43 pages, 2 figures, included versions of the main theorems for weak tangents, revised section 5.2, to appear in the Journal of Differential ...
Hakavuori, Eero, Le Donne, Enrico
openaire +2 more sources
On Viscosity and Equivalent Notions of Solutions for Anisotropic Geometric Equations
We prove that viscosity solutions of geometric equations in step two Carnot groups can be equivalently reformulated by restricting the set of test functions at the singular points.
Cecilia De Zan, Pierpaolo Soravia
doaj +1 more source