Results 191 to 200 of about 5,146,733 (247)
Some of the next articles are maybe not open access.
1970
When we say in analytic geometry that a point has co-ordinates (x, y), the order in which x and y occur, in the symbol (x, y), is important: (1, 2) ≠ (2, 1). For this reason we call (x, y) an ordered pair. Moreover, x and y come from sets; in this case x, y ∈ R. This idea can be generalizedf as follows. Let 𝒰 be a universe.
H. B. Griffiths, P. J. Hilton
openaire +1 more source
When we say in analytic geometry that a point has co-ordinates (x, y), the order in which x and y occur, in the symbol (x, y), is important: (1, 2) ≠ (2, 1). For this reason we call (x, y) an ordered pair. Moreover, x and y come from sets; in this case x, y ∈ R. This idea can be generalizedf as follows. Let 𝒰 be a universe.
H. B. Griffiths, P. J. Hilton
openaire +1 more source
1989
The Cartesian product of two sets is the set of all pairs of elements such that the first element of the pair is in one input set and the second element is in the other input set. We discuss derivations of algorithms to find Cartesian set products from Manna and Waldinger [42] and from Smith [53].
D. M. Steier, A. P. Anderson
openaire +1 more source
The Cartesian product of two sets is the set of all pairs of elements such that the first element of the pair is in one input set and the second element is in the other input set. We discuss derivations of algorithms to find Cartesian set products from Manna and Waldinger [42] and from Smith [53].
D. M. Steier, A. P. Anderson
openaire +1 more source
Semi-cartesian product of graphs
Journal of Mathematical Chemistry, 2013zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +1 more source
American Journal of Mathematics, 1969
0. Introduction. Let as be an arc in the interior In of the n-cell In and let X be the quotient space I"/ac obtained by shrinking a to a point. According to Kwun and Raymond [4], X X 12 is an (n + 2)-cell. The crucial tool in their proof is the result of Andrews-Curtis that, under the above conditions, In/a X R1 is homeomorphic to In XR1.
openaire +2 more sources
0. Introduction. Let as be an arc in the interior In of the n-cell In and let X be the quotient space I"/ac obtained by shrinking a to a point. According to Kwun and Raymond [4], X X 12 is an (n + 2)-cell. The crucial tool in their proof is the result of Andrews-Curtis that, under the above conditions, In/a X R1 is homeomorphic to In XR1.
openaire +2 more sources
A Note on Fractal Measures and Cartesian Product Sets
Bulletin of the Malaysian Mathematical Sciences Society, 2021Najmeddine Attia +2 more
semanticscholar +1 more source
1989
In this section we introduce on X, the set of alternatives, the main structure of interest in this monograph. We shall assume throughout the sequel that X is a Cartesian product \({\prod _{{\text{i}} \in {\text{I}}}}{\Gamma _{\text{i}}}\), with I an index set. We shall nearly always, with Chapter V excepted, assume that I is a finite set (1,...,n), for
openaire +1 more source
In this section we introduce on X, the set of alternatives, the main structure of interest in this monograph. We shall assume throughout the sequel that X is a Cartesian product \({\prod _{{\text{i}} \in {\text{I}}}}{\Gamma _{\text{i}}}\), with I an index set. We shall nearly always, with Chapter V excepted, assume that I is a finite set (1,...,n), for
openaire +1 more source
Mathematical Notes of the Academy of Sciences of the USSR, 1984
In the present paper the author introduces the concept of almost slender modules, which is very useful for studying the Cartesian products of modules over a Dedekind domain. The ring R is called slender [see \textit{E. L. Lady}, Pac. J. Math. 49, 397-406 (1973; Zbl 0274.16015)] if for every homomorphism \(f: \prod^{\infty}_{i=1}A_ i\to R\), where ...
openaire +2 more sources
In the present paper the author introduces the concept of almost slender modules, which is very useful for studying the Cartesian products of modules over a Dedekind domain. The ring R is called slender [see \textit{E. L. Lady}, Pac. J. Math. 49, 397-406 (1973; Zbl 0274.16015)] if for every homomorphism \(f: \prod^{\infty}_{i=1}A_ i\to R\), where ...
openaire +2 more sources
On the resistance diameter of the Cartesian and lexicographic product of paths
Journal of Applied Mathematics and Computation, 2021Yun-Xiang Li +3 more
semanticscholar +1 more source
Physics-Inspired Structural Representations for Molecules and Materials
Chemical Reviews, 2021Félix Musil +2 more
exaly

