Results 271 to 280 of about 514,126 (359)

Nanocatalytic Neuroprotection and Neurological Recovery Post‐Traumatic Brain Injury

open access: yesAdvanced Science, EarlyView.
This study demonstrates that combining Ce0.7Zr0.3O2 nanozymes with nimodipine enhances neuroprotection after traumatic brain injury. The therapy reduces oxidative stress, neuronal apoptosis, and improves blood–brain barrier integrity, with nanozymes effective at low doses.
Xinjie Hong   +10 more
wiley   +1 more source

Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9

open access: yesCell, 1998
K. Kuida   +8 more
semanticscholar   +1 more source

Engineering Neutrophil Vesicles for Synergistic Protection against Ischemia/Reperfusion Injury after Lung Transplant

open access: yesAdvanced Science, EarlyView.
Engineered neutrophil‐derived vesicles (SOD2‐Fer‐1@CVs) co‐delivering antioxidant and ferroptosis‐inhibitory agents enable inflammation‐targeted, ROS‐responsive therapy for ischemia–reperfusion injury in lung transplantation. Synergizing with ex vivo lung perfusion, this strategy alleviates oxidative stress and inflammation, restores vascular integrity,
Hao‐Xiang Yuan   +10 more
wiley   +1 more source

Vinburnine Sensitizes Radiotherapy Efficacy in Nasopharyngeal Carcinoma by Triggering Pyroptosis and Immune Responses via Activation of EDAR‐NFκB Pathway

open access: yesAdvanced Science, EarlyView.
This study demonstrates that vinburnine, an approved cerebrovascular drug, synergizes with radiotherapy in nasopharyngeal carcinoma (NPC) by modulating EDAR‐NFκB signaling through directly binding to EDAR, leading to triggering apoptosis/pyroptosis, and amplifying CCL5/CX3CL1‐driven T‐cell cytotoxicity.
Jing Chen   +9 more
wiley   +1 more source

Disruption of NF‐κB‐Mediated Copper Homeostasis Sensitizes Breast Cancer to Cuproptosis

open access: yesAdvanced Science, EarlyView.
This study reveals a feedback mechanism regulating copper homeostasis, in which copper directly interacts with TAK1 to activate NF‐κB signaling, while NF‐κB transcriptionally suppresses copper transporter (CTR1) expression. These findings highlight a promising therapeutic strategy for breast cancer by combining NF‐κB inhibitors with copper chelators or
Xiaomei Zhang   +16 more
wiley   +1 more source

Salvia miltiorrhiza: insights on the protective effect and mechanism of myocardial ischemia-reperfusion injury. [PDF]

open access: yesBraz J Med Biol Res
Lan Q   +9 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy