Results 11 to 20 of about 5,954 (211)
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai +8 more
wiley +1 more source
Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu +3 more
wiley +1 more source
The SERS spectra of reporter molecules adsorbed on chiral gold nanorods depends on the handedness of circularly polarized light (CPL‐SERS). The bisignate plasmonic CD spectra of chiral nanorods provides wavelength‐dependent CPL‐SERS. Selective discrimination of chiral nanorod handedness and different Raman reporters allow highly sensitive codification ...
Andrés Serrano‐Freijeiro +9 more
wiley +1 more source
Functional central limit theorems for a large network in which customers join the shortest of several queues [PDF]
.We consider N single server infinite buffer queues with service rate β. Customers arrive at rate Nα, choose L queues uniformly, and join the shortest.
C. Graham
semanticscholar +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source
On mean central limit theorems for stationary sequences [PDF]
In this paper, we give estimates of the minimal ${\mathbb{L}}^1$ distance between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary sequences satisfying projective criteria in the style of Gordin or weak
J. Dedecker, E. Rio
semanticscholar +1 more source
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley +1 more source
Martingale Central Limit Theorems
The classical Lindeberg-Feller CLT for sums of independent random variables (rv's) provides more than the convergence in distribution of the sum to a normal law.
B. Brown
semanticscholar +1 more source
Spin and Charge Control of Topological End States in Chiral Graphene Nanoribbons on a 2D Ferromagnet
Chiral graphene nanoribbons on a ferromagnetic gadolinium‐gold surface alloy display tunable spin and charge states at their termini. Atomic work function variations and exchange fields enabe transitions between singlet, doublet, and triplet configurations.
Leonard Edens +8 more
wiley +1 more source
Spin‐Split Edge States in Metal‐Supported Graphene Nanoislands Obtained by CVD
Combining STM measurements and ab‐initio calculations, we show that zig‐zag edges in graphene nanoislands grown on Ni(111) by CVD retrieve their spin‐polarized edge states after intercalation of a few monolayers of Au. ABSTRACT Spin‐split states localized on zigzag edges have been predicted for different free‐standing graphene nanostructures.
Michele Gastaldo +6 more
wiley +1 more source

