Results 141 to 150 of about 594,163 (347)

Targeting Multilayered Metabolic Networks in Brain Diseases: Emerging Perspectives on Nanodelivery Strategies

open access: yesAdvanced Science, EarlyView.
Brain diseases involve multilayered metabolic disruptions that reshape cellular interactions and microenvironments. This review outlines core metabolic features across disease states and presents emerging nanodelivery strategies as precision tools to reprogram pathological metabolism.
Jingyi Zhou, Chen Jiang
wiley   +1 more source

Synergistic Modulation of Microglial Polarization by Acteoside and Ferulic Acid via Dual Targeting of Nrf2 and RORγt to Alleviate Depression‐Associated Neuroinflammation

open access: yesAdvanced Science, EarlyView.
Machine‐learning‐directed phytochemical pair ACT/FA, administered at BDD's orthodox ratio, synergistically modulates microglial polarization via dual Nrf2/RORγt targeting to attenuate neuroinflammation and depressive behaviors. This concentration‐dependent synergism replicates the parent formula's efficacy while providing a mechanistic basis for ...
Dongjing Guo   +7 more
wiley   +1 more source

Advanced Biomaterial Delivery of Hypoxia‐Conditioned Extracellular Vesicles (EVs) as a Therapeutic Platform for Traumatic Brain Injury

open access: yesAdvanced Science, EarlyView.
This research introduces a novel approach to enhance neuroregeneration following Traumatic Brain Injury (TBI). Extracellular Vesicles (EVs) are isolated from human neural progenitor cells under hypoxic conditions, leading to enhanced expression of neurogenic and angiogenic factors.
Joshua B. Stein   +9 more
wiley   +1 more source

Single‐Nucleus RNA Sequencing Reveals Mid‐Gestational Neurodevelopment Features in the Superior Temporal Plane from Fetuses with Nonsyndromic Cleft Lip and Palate

open access: yesAdvanced Science, EarlyView.
Single‐nucleus RNA sequencing of mid‐gestation brains from fetuses with nonsyndromic cleft lip and palate reveals major disruptions in cell composition, cell‐to‐cell signaling, and gene regulation. The transcription factor MEF2C is identified as a central regulator of these changes and shows that lowering MEF2C impairs synapse formation, linking cleft ...
Liu‐Lin Xiong   +19 more
wiley   +1 more source

PCSK9 Loss‐of‐Function Disrupts Cellular Microfilament Network via LIN28A/HES5/JMY Axis in Neural Tube Defects

open access: yesAdvanced Science, EarlyView.
PCSK9 acts as a molecular chaperone promoting LIN28A lysosomal degradation. LIN28A elevates transcription factor HES5, increasing JMY expression. PCSK9 loss causes neural tube defects (NTDs) by disrupting the LIN28A/HES5/JMY axis, and high JMY disorganizes the neural progenitor cell microfilament network, leading to incomplete neural tube structure in ...
Xiaoshuai Li   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy