Results 51 to 60 of about 156,087 (347)

Functional Compost [PDF]

open access: yes, 2006
The aim of the research program Functional Compost is to develop and test compost, which have been enriched with chitin, for plant growth promoting properties and to recognise specific mechanisms. Two types of compost were included in the program: source
Brøgger, Morten   +7 more
core  

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

open access: yesJournal of Functional Biomaterials, 2015
Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan.
Kazuo Azuma   +7 more
doaj   +1 more source

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Controle da podridão cinzenta da maçã por produtos naturais biologicamente ativos [PDF]

open access: yes, 2010
Indexación: Web of Science; ScieloBiorend SC (chitosan), BC-1000 EC (grapefruit extract plus bioflavonoids) and ECO-100 SC (bioflavonoids plus organic acids, citric phytoalexins, fatty acids, glycerides and sugars), respectively, suppressed grey rot of ...
Di Piero, Robson M.   +7 more
core   +2 more sources

Smart, Bio‐Inspired Polymers and Bio‐Based Molecules Modified by Zwitterionic Motifs to Design Next‐Generation Materials for Medical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz   +3 more
wiley   +1 more source

Functional Materials for Environmental Energy Harvesting in Smart Agriculture via Triboelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva   +9 more
wiley   +1 more source

Chitin Hydrogels Prepared at Various Lithium Chloride/N,N-Dimethylacetamide Solutions by Water Vapor-Induced Phase Inversion

open access: yesJournal of Chemistry, 2020
Chitin was chemically extracted from crab shells and then dissolved in N,N-dimethylacetamide (DMAc) solvent with lithium chloride (LiCl) at 3, 5, 7, and 10%. The concentrated chitin-DMAc/LiCl solutions were used for the preparation of chitin hydrogels by
Khoa Dang Nguyen, Takaomi Kobayashi
doaj   +1 more source

Exploiting prokaryotic chitin-binding proteins for glycan recognition [PDF]

open access: yes, 2011
• The cloning, expression and characterisation of prokaryotic chitin-binding proteins from Serratia marcescens, Pseudomonas aeruginosa, Photorhabdus luminescens Microfluidics and Photorhabdus asymbiotica • Development of an assay to assess the activity
Clarke, Paul A.   +4 more
core  

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy