Results 21 to 30 of about 1,930 (230)
Minimal toughness in special graph classes [PDF]
Let $t$ be a positive real number. A graph is called $t$-tough if the removal of any vertex set $S$ that disconnects the graph leaves at most $|S|/t$ components, and all graphs are considered 0-tough. The toughness of a graph is the largest $t$ for which
Gyula Y. Katona, Kitti Varga
doaj +1 more source
Algorithmic Aspects of Secure Connected Domination in Graphs
Let G = (V, E) be a simple, undirected and connected graph. A connected dominating set S ⊆ V is a secure connected dominating set of G, if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and the set (S \ {v}) ∪ {u} is a connected dominating ...
Kumar Jakkepalli Pavan+1 more
doaj +1 more source
Capturing Logarithmic Space and Polynomial Time on Chordal Claw-Free Graphs [PDF]
We show that the class of chordal claw-free graphs admits LREC$_=$-definable canonization. LREC$_=$ is a logic that extends first-order logic with counting by an operator that allows it to formalize a limited form of recursion.
Berit Grußien
doaj +1 more source
$b$-vectors of chordal graphs [PDF]
19 pages. 4 figures.
Montejano, Luis Pedro+1 more
openaire +5 more sources
Graph Extremities Defined by Search Algorithms
Graph search algorithms have exploited graph extremities, such as the leaves of a tree and the simplicial vertices of a chordal graph. Recently, several well-known graph search algorithms have been collectively expressed as two generic algorithms called ...
Jean-Paul Bordat+3 more
doaj +1 more source
AbstractWe introduce the closed-neighborhood intersection multigraph as a useful multigraph version of the square of a graph. We characterize those multigraphs which are squares of chordal graphs and include an algorithm to go from the squared chordal graph back to its (unique!) square root. This becomes particularly simple in the case of k-trees, with
Frank Harary, Terry A. McKee
openaire +1 more source
Recognition of chordal graphs and cographs which are Cover-Incomparability graphs [PDF]
Cover-Incomparability graphs (C-I graphs) are an interesting class of graphs from posets. A C-I graph is a graph from a poset $P=(V,\le)$ with vertex set $V$, and the edge-set is the union of edge sets of the cover graph and the incomparability graph of ...
Arun Anil, Manoj Changat
doaj +1 more source
Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs
AbstractThis paper deals with the graph isomorphism (GI) problem for two graph classes: chordal bipartite graphs and strongly chordal graphs. It is known that GI problem is GI complete even for some special graph classes including regular graphs, bipartite graphs, chordal graphs, comparability graphs, split graphs, and k-trees with unbounded k.
Ryuhei Uehara+2 more
openaire +2 more sources
On chordal graph and line graph squares [PDF]
In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs.
Robert Scheidweiler+1 more
openaire +3 more sources
Triangulated graphs have many interesting properties (perfection, recognition algorithms, combinatorial optimization algorithms with linear complexity). Hyper-triangulated graphs are those where each induced subgraph has a hyper-simplicial vertex. In this paper we give the characterizations of hyper-triangulated graphs using an ordering of vertices and
openaire +1 more source