Results 251 to 260 of about 2,269,710 (363)

Recycling of Thermoplastics with Machine Learning: A Review

open access: yesAdvanced Functional Materials, EarlyView.
This review shows how machine learning is revolutionizing mechanical, chemical, and biological pathways, overcoming traditional challenges and optimizing sorting, efficiency, and quality. It provides a detailed analysis of effective feature engineering strategies and establishes a forward‐looking research agenda for a truly circular thermoplastic ...
Rodrigo Q. Albuquerque   +5 more
wiley   +1 more source

Electrochemically Driven Tandem In‐Plane Reduction and FeCl3‐ Intercalation of Highly Crystalline Graphene Oxide Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a green processing route for high‐performance reduced graphene oxide (rGO) transparent conductive films (TCFs) using highly crystalline Brodie's GO. In‐plane electrochemical reduction forms rGO on insulating substrates without toxic reductants or heat. Subsequent FeCl₃ intercalation enhances conductivity, overcoming the transparency–
Tatsuki Tsugawa   +6 more
wiley   +1 more source

Chemometric Analysis Combined with GC × GC-FID and ESI HR-MS to Evaluate Ultralow-Sulfur Diesel Stability

open access: yesACS Omega
Deborah V. A. de Aguiar   +7 more
doaj   +1 more source

A Novel Raman-Chromatography Assembly for Automated Calibration and In-Line Monitoring in Bioprocessing. [PDF]

open access: yesEng Life Sci
Heyer-Müller J   +7 more
europepmc   +1 more source

THE INDOLE ACIDS OF HUMAN URINE. PAPER CHROMATOGRAPHY OF INDOLE ACIDS

open access: hybrid, 1958
Marvin D. Armstrong   +3 more
openalex   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Catalytic TiO2 with Self‐Assembled Monolayer for Highly Sensitive, Selective, and Non‐Invasive Monitoring of Sweat L‐Cysteine

open access: yesAdvanced Functional Materials, EarlyView.
A self‐assembled monolayer of 3‐mercaptopropyltrimethoxysilane (MPTS) molecular receptor and titanium oxide‐modified carbon cloth (MPTS/TiO2/CC) was synthesized for the specific detection of sweat L‐cysteine, which is associated with the precision neutrition, cardiovascular system and neuro system.
Xiangjie Chen   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy