Results 191 to 200 of about 430,740 (285)

The mitotic chromosome periphery modulates chromosome mechanics. [PDF]

open access: yesNat Commun
Mendonca T   +7 more
europepmc   +1 more source

A Novel OsMPK6‐OsMADS47‐PPKL1/3 Module Controls Grain Shape and Yield in Rice

open access: yesAdvanced Science, EarlyView.
OsMADS47 is identified as a key regulator governing rice grain morphology. Phosphorylation‐dependent regulation of its activity directs the development of slender versus round grains, modulating both yield and appearance. This mechanism bridges cellular signaling with transcriptional regulation, establishing a molecular framework for grain optimization.
Jingjing Fang   +9 more
wiley   +1 more source

SMCHD1 maintains heterochromatin, genome compartments and epigenome landscape in human myoblasts. [PDF]

open access: yesNat Commun
Huang Z   +6 more
europepmc   +1 more source

RSPO2 Coordinates with GDF9:BMP15 Heterodimers to Promote Granulosa Cell and Oocyte Development in Mice

open access: yesAdvanced Science, EarlyView.
RSPO2 and GDF9:BMP15 heterodimers—core components of oocyte‐secreted factors (OSFs)—coordinate to shape the molecular architecture of preantral granulosa cells via gene‐specific synergistic and antagonistic regulation, mediated through CTNNB1–SMAD2 signaling crosstalk.
Yingmei Wang   +7 more
wiley   +1 more source

Transposable element expression is associated with sex chromosome number in humans. [PDF]

open access: yesPLoS Genet
Teoli J   +14 more
europepmc   +1 more source

A Prion‐Like Domain in EBV EBNA1 Promotes Phase Separation and Enables SRRM1 Splicing

open access: yesAdvanced Science, EarlyView.
This study discoveries that EBV EBNA1 behaves as a prion‐like protein, verified using cell‐based assays and the Saccharomyces cerevisiae Sup35p prion identification system. The prion‐like domain of EBNA1 drives liquid–liquid phase separation. EBNA1 interacts with the splicing factor SRSF1 to regulate the expression of the SRRM1 splicing isoforms ...
Xiaoyue Zhang   +17 more
wiley   +1 more source

Histone Demethylase UTX Suppresses Tumor Cell Proliferation by Regulating Stress Granules

open access: yesAdvanced Science, EarlyView.
These findings indicate that cytoplasmic UTX forms puncta and co‐localizes in stress granules (SGs) upon various stresses. UTX TPR‐domain‐dependently and demethylase‐activity‐independently destabilize SGs by binding G3BP1, the SG hub protein, to disrupt SG network, thus affects tumorigenesis.
Xikai Liu   +17 more
wiley   +1 more source

From Jumping Gene to Cancer: Revisiting the Role of JTB Protein. [PDF]

open access: yesBiomedicines
Jayaweera TM   +5 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy