Results 91 to 100 of about 122,074 (252)
Integrative Approaches for DNA Sequence‐Controlled Functional Materials
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo +4 more
wiley +1 more source
This treatise collects and reflects the major developments of direct (discrete) variational calculus since the end of the 17th century until about 1990, with restriction to classical linear elastomechanics, such as 1D-beam theory, 2D-plane stress ...
Erwin Stein
doaj
The reflection of elastic waves at the surface of a couple-stress elastic half-space with a viscoelastic support is studied in this paper. Different from the classical elastic solid, there are: a non-dispersive dilatational propagating wave, a dispersive
C.D. Wang, P.J. Wei, P. Zhang, Y.Q. Li
doaj +1 more source
Irreducible matrix resolution of the elasticity tensor for symmetry systems
In linear elasticity, a fourth order elasticity (stiffness) tensor of 21 independent components completely describes deformation properties of a material. Due to Voigt, this tensor is conventionally represented by a $6\times 6$ symmetric matrix.
Itin, Yakov
core
Robust and Reversible Thermofluorescence in Solvent‐Free Thermoplastic Polyurethane Composites
Thermofluorescent polymer composites with high‐contrast optical outputs are prepared by solvent‐free blending of indenoquinacridone dye into a thermoplastic polyurethane matrix. The temperature‐dependent fluorescence originates from aggregation–dissociation of the dye molecules, regulated by competing hydrogen bonds from the polymer matrix.
Guanghua Yu +8 more
wiley +1 more source
The ultrahard teeth of mollusks that feed on rocky substrates contain a wear‐resistant coating on their surfaces consisting of densely packed mesocrystalline magnetic nanoparticles within an organic matrix. These coatings display significant hardness and toughness through their highly controlled mesocrystalline architectures.
Taifeng Wang +7 more
wiley +1 more source
Geometry‐Dependent Adhesion in Transparent Monodomain Liquid Crystal Elastomers
Liquid Crystal Elastomers (LCEs) are emerging as exciting pressure‐sensitive adhesives. We examine adhesion in chemically identical elastomer films, exploring the influence of geometry (director orientation) and phase (nematic or isotropic). We demonstrate the potential of these aligned films as transparent, tunable, broad‐temperature‐range smart ...
Aidan Street +3 more
wiley +1 more source
This is the third part of a short series of paper, revisiting some classical concepts of Linear Elastic Fracture Mechanics. Based on the solution for the single edge notched strip, discussed in Part-II, the present study deals with the stress field developed in a stretched finite strip, weakened by two symmetric edge notches.
Markides, Christos +1 more
openaire +4 more sources
Spatially Tailorable Liquid Crystalline Elastomer Alignment During Digital Light Process 3D Printing
Here, we report the fabrication of 3D printable liquid crystalline elastomer (LCE) structures with spatially tailorable alignment domains within the same layer. This work addresses the long‐standing challenge of preparing complex 3D LCE architectures with patterned functional domains to achieve nonlinear deformations. Fabrication of multi‐domains in 3D
Adam Bischoff +8 more
wiley +1 more source
Viscoelastic hydrodynamics and holography
We formulate the theory of nonlinear viscoelastic hydrodynamics of anisotropic crystals in terms of dynamical Goldstone scalars of spontaneously broken translational symmetries, under the assumption of homogeneous lattices and absence of plastic ...
Jay Armas, Akash Jain
doaj +1 more source

