Results 211 to 220 of about 292,791 (230)

Degradable Magnetic Composites from Recycled NdFeB Magnets for Soft Actuation and Sensing

open access: yesAdvanced Robotics Research, EarlyView.
This work presents a degradable soft magnetic composite made from recycled NdFeB particles embedded in a gelatin‐based organogel. The material is processed into magnetic sensors and soft robotic components, which can later be dissolved in a green solvent to recover NdFeB magnetic particles.
Muhammad Bilal Khan   +14 more
wiley   +1 more source

Confounding Factors and Their Mitigation in Measurements of Bioelectrical Impedance at the Skin Interface. [PDF]

open access: yesBioengineering (Basel)
Iftime A   +5 more
europepmc   +1 more source

TacScope: A Miniaturized Vision‐Based Tactile Sensor for Surgical Applications

open access: yesAdvanced Robotics Research, EarlyView.
TacScope is a compact, vision‐based tactile sensor designed for robot‐assisted surgery. By leveraging a curved elastomer surface with pressure‐sensitive particle redistribution, it captures high‐resolution 3D tactile feedback. TacScope enables accurate tumor detection and shape classification beneath soft tissue phantoms, offering a scalable, low‐cost ...
Md Rakibul Islam Prince   +3 more
wiley   +1 more source

Liquid Crystalline Elastomers in Soft Robotics: Assessing Promise and Limitations

open access: yesAdvanced Robotics Research, EarlyView.
Liquid crystalline elastomers (LCEs) are programmable soft materials that undergo large, anisotropic deformation in response to external stimuli. Their molecular alignment encodes directional actuation in a monolithic structure, making them long‐standing candidates for soft robotic systems.
Justin M. Speregen, Timothy J. White
wiley   +1 more source

Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion

open access: yesAdvanced Robotics Research, EarlyView.
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza   +3 more
wiley   +1 more source

Application of the augmented competing stimulus assessment to identify and establish competing self-restraint items. [PDF]

open access: yesJ Appl Behav Anal
Frank-Crawford MA   +5 more
europepmc   +1 more source

Nanomaterial‐Based Muscle Cell/Neural Tissue Biohybrid Robots: From Actuation to Biomedical Applications

open access: yesAdvanced Robotics Research, EarlyView.
Muscle cell‐based biohybrid robot using nanomaterials for function enhancement and neural function for biomedical applications. Biohybrid robotics, an emerging field combining biological tissues with artificial systems, has made significant progress in developing various biohybrid constructs, including muscle‐cell‐driven biorobots and microbots.
Minkyu Shin   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy