Results 91 to 100 of about 839,329 (389)
We apply first principles computational techniques to analyze the two-electron, multi-step, electrochemical reduction of CO2 to CO in water using cobalt porphyrin as a catalyst.
Leung, Kevin +4 more
core +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Dual‐phase MoC/Mo2C/CoNC nanoframes are synthesized via a MOF‐on‐MOF strategy, demonstrating a large salt adsorption capacity, a low energy consumption, and an excellent cycling stability. In situ/ex situ characterizations and DFT calculations reveal that the MoC/Mo2C dual phase transition facilitates Na+ adsorption/desorption, while interface‐induced ...
Feifei Pang +8 more
wiley +1 more source
Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation.
Burgos, Benito Santos +5 more
core +3 more sources
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
Atomic cobalt on nitrogen-doped graphene for hydrogen generation
Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts.
H. Fei +13 more
semanticscholar +1 more source
The low Coulombic efficiency during cycling hinders the application of Cobalt-free lithium-rich materials in lithium-ion batteries. Here we demonstrated that the dissolution of iron, rather than traditionally acknowledged manganese, is mainly responsible
Wei Liu +5 more
semanticscholar +1 more source
Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das +8 more
wiley +1 more source
Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu +12 more
wiley +1 more source
Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy [PDF]
Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests.
Barrow, B. J., Bizon, P. T.
core +1 more source

