Results 151 to 160 of about 437,388 (294)

Using Platelet-Rich Plasma to Reverse the Effects of Tendinopathy and Prevent Tendon Re-rupture after Surgery in Athletes: The Search for a Standardized Protocol [PDF]

open access: yes, 2016
30-50% of all lesions amateur and professional sports players will experience during activity are related to the tendon. Moreover, the incidence of tendinopathy, a precursor to tendon rupture, is much higher in both of these groups due to excessive ...
Patel, Shiv
core   +1 more source

Insight into the Internal Structure of Biogenic, Synthetic and Geological Apatite by Electron Microscopy and X‐Ray Scattering

open access: yesAdvanced Functional Materials, EarlyView.
Apatite occurs in many forms in nature, e.g. in teeth and geological minerals. Internally, biological apatite contains nanocrystals that are also found in synthetically prepared calcium phosphate nanoparticles which are used in biomedicine, e.g. for gene and drug delivery and for bone regeneration. Abstract Calcium phosphate is the inorganic component (
Kathrin Kostka   +3 more
wiley   +1 more source

Bioinspired Bromination Enables Extensible, Strain‐Stiffening Resilin Peptide Scaffolds with Tunable Degradation

open access: yesAdvanced Functional Materials, EarlyView.
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli   +6 more
wiley   +1 more source

Safety evaluation of low level light therapy on cancer cells [PDF]

open access: yes, 2016
OBJECTIVE: Low level light therapy (LLLT) is being widely used in wound healing and pain relief, and its use is expected to be expanded rapidly to treatment of other disorders as well in a foreseeable future.
Jeong, Andrew S.
core   +1 more source

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation [PDF]

open access: yes, 2016
Purpose: We aimed to characterize alterations in the posterior scleral collagen microstructure before detectable disease onset in a canine model of open-angle glaucoma caused by an ADAMTS10 mutation.
Boote, Craig   +7 more
core   +1 more source

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions

open access: yesAdvanced Functional Materials, EarlyView.
A mechanically tunable hydrogel composed of gelatin, chondroitin sulfate and laminin promotes angiogenesis in vitro without the supplement of growth factors. Endothelial cells morphogenesis was further enhanced by medium conditioned with bioactive glass 58S‐released ions (Ca and Si), thus offering a promising strategy to vascularize 3D tissue ...
Marco Piazzoni   +13 more
wiley   +1 more source

Fully Bio‐Based Gelatin Organohydrogels via Enzymatic Crosslinking for Sustainable Soft Strain and Temperature Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Enzymatically crosslinked gelatin‐based organohydrogels, fabricated through a fully bio‐based and scalable process, exhibit exceptional strain and temperature sensing capabilities with minimal interference from environmental humidity. These transparent, stretchable, and ionically conductive materials operate without synthetic fillers or dopants.
Pietro Tordi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy