Results 31 to 40 of about 23,427 (258)
Matrix stiffness and architecture drive fibro-adipogenic progenitors’ activation into myofibroblasts
Fibro-adipogenic progenitors (FAPs) are essential in supporting regeneration in skeletal muscle, but in muscle pathologies FAPs the are main source of excess extracellular matrix (ECM) resulting in fibrosis.
Taryn Loomis +5 more
doaj +1 more source
Plecstatin inhibits hepatocellular carcinoma tumorigenesis and invasion through cytolinker plectin
The ruthenium‐based metallodrug plecstatin exerts its anticancer effect in hepatocellular carcinoma (HCC) primarily through selective targeting of plectin. By disrupting plectin‐mediated cytoskeletal organization, plecstatin inhibits anchorage‐dependent growth, cell polarization, and tumor cell dissemination.
Zuzana Outla +10 more
wiley +1 more source
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani +6 more
wiley +1 more source
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana +2 more
wiley +1 more source
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner +4 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
P136 ALTERED ADVENTITIAL COLLAGEN FIBRIL MECHANICS AND MORPHOLOGY WITH HIGH PULSE WAVE VELOCITY
Background: Arterial stiffening, occurring as part of the natural aging process of the artery, is well- established as a powerful predictor of cardiovascular disease.
Zhuo Chang +3 more
doaj +1 more source
Collagen XII, a fibril-associated collagen with interrupted triple helices (FACIT), influences fibrillogenesis in numerous tissues. In addition to this extracellular function, collagen XII also directly regulates cellular function. Collagen XII is widely
Yayoi Izu, David E. Birk
doaj +1 more source
3D Multicellular Scaffold Based Model for Advancing Bone Disorder Research
A scalable 3D multicellular in vitro bone model engineered by integrating osteoblasts, osteoclasts, and endothelial cells on biodegradable scaffolds. The system recapitulates key features of human bone remodeling and disease pathology. As a proof of concept, the model mimics osteogenesis imperfecta, demonstrating its potential as a physiologically ...
Gali Guterman‐Ram +5 more
wiley +1 more source
Matrix metalloproteinase 14 is required for fibrous tissue expansion
Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood.
Susan H Taylor +10 more
doaj +1 more source

