Results 231 to 240 of about 751,293 (281)

Biofabrication of Endothelialized, Intrinsically Vascularized 3D‐Printed Recombinant Spider Silk Scaffolds

open access: yesAdvanced Healthcare Materials, EarlyView.
This study evaluates 3D‐printed recombinant spider silk hydrogel eADF4(C16)‐RGD in a rat AV loop model for tissue engineering. Constructs with T17b endothelial progenitor cells showed enhanced vascularization and biodegradation. Results highlight the importance of scaffold design and cellular integration in improving vascular density and overall ...
Claire M. Weinhold   +9 more
wiley   +1 more source

Automating Vascular Biology: An End‐to‐End Automated Workflow for High‐Throughput Blood Vessel‐on‐a‐Chip Production and Multi‐Site Validation

open access: yesAdvanced Healthcare Materials, EarlyView.
AngioPlate384 is a 384‐well open‐top platform that automates production of more than 100 miniaturized, perfusable blood vessels embedded in hydrogel and supported by stromal cells. Stromal‐endothelial co‐culture strengthens blood vessel barrier function and yields responses useful for translational planning. Scalable and automation‐ready, it suits drug
Dawn S. Y. Lin   +14 more
wiley   +1 more source

Engineered ETS1‐Nanoconjugate Restores Immune Homeostasis through Dual Immune‐Vascular Modulation in Relapsing and Progressive Multiple Sclerosis

open access: yesAdvanced Healthcare Materials, EarlyView.
The biomimetic nanoplatform IMNP (ETS1 pDNA/PBAE@ITP‐MM) undergoes targeted disassembly at inflammatory vascular sites to release the ETS1 plasmid (pETS1). This release initiates a cascade of effects that inhibit pathogenic pathways and support immune homeostasis. (Abbreviations: EndMT, endothelial‐to‐mesenchymal transition; EC, endothelial cell; TC, T
Feng Zhang   +13 more
wiley   +1 more source

Oxygen and ROS Delivery for Infected Wound Healing and Future Prospects

open access: yesAdvanced Healthcare Materials, EarlyView.
Bacterial infection is a major driver of delayed wound healing and postsurgical readmissions; with rising antibiotic resistance, solid peroxide–releasing biomaterials offer sustained delivery of ROS/O2 for antimicrobial control and microenvironmental modulation.
Ayden Watt   +7 more
wiley   +1 more source

A New 3D Colon on a Chip to Decipher the Influence of Mechanical Forces on the Physiological Cellular Ecosystem

open access: yesAdvanced Healthcare Materials, EarlyView.
To dissect how mechanical forces influence intestinal physiology, we developed a stretchable 3D colon‐on‐chip that integrates tunable topography, stiffness and peristalsis‐like motion within a physiologically relevant microenvironment. We showed that stretching is a dominant factor governing epithelial behavior, markedly enhancing proliferation and ...
Moencopi Bernheim‐Dennery   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy