Results 71 to 80 of about 386,373 (206)

Numerical Ranges of Normal Weighted Composition Operators on the Fock Space of CN

open access: yesJournal of Function Spaces, 2018
Numerical ranges of normal weighted composition operators on the Fock space of CN are completely characterized. The main result shows that numerical ranges of such operators are closely related to their composition symbols.
Lili Lang, Liankuo Zhao
doaj   +1 more source

Weighted Composition Operators on BMOA [PDF]

open access: yesComputational Methods and Function Theory, 2008
The author completely characterizes the boundedness and compactness of the weighted composition operator \(W_{\psi,\varphi}f=\psi (f\circ \varphi)\) acting on \(BMOA\) and \(VMOA\) of the unit disc. The results extend and unify those known for the cases \(\varphi(z)=z\) and \(\psi(z)=1\) corresponding to the multiplication operator \(M_\psi\) [see ...
openaire   +2 more sources

Binormal Weighted Composition Operators on the Fock Space

open access: yesJournal of Function Spaces
The aim of this paper is to obtain the sufficient and necessary conditions for weighted composition operators uCφ with φz=az+b a≤1, uz=ced¯z, where a,b,c,d∈ℂ, to be binormal or quasinormal on the Fock space F2. Surprisingly, the normality, quasinormality,
Cao Jiang, Shi-an Han
doaj   +1 more source

Dynamics of weighted composition operators on spaces of continuous functions [PDF]

open access: green, 2019
María José Beltrán Meneu   +2 more
openalex   +1 more source

Weighted Differentiation Composition Operators to Bloch-Type Spaces

open access: yesAbstract and Applied Analysis, 2013
We characterized the boundedness and compactness of weighted differentiation composition operators from BMOA and the Bloch space to Bloch-type spaces. Moreover, we obtain new characterizations of boundedness and compactness of weighted differentiation ...
Junming Liu   +2 more
doaj   +1 more source

Composition operators on $F^{+}$ [PDF]

open access: yesStudia Mathematica, 1976
Roberts, James W., Stoll, Manfred
openaire   +2 more sources

Fixed point results on nonlinear composition operators A ∘ B $A\circ B$ and applications

open access: yesJournal of Inequalities and Applications
This paper investigates a class of composition operators: the nonlinear operator T = A ∘ B $T=A\circ B$ and the sum-type operator T = A ∘ B + C $T=A\circ B+C$ , where A, B, and C are either single or bivariate operators. Here, “∘” denotes the composition
Bibo Zhou, Yiping Du
doaj   +1 more source

Home - About - Disclaimer - Privacy