Solitary waves in nonlocal NLS with dispersion averaged saturated nonlinearities [PDF]
A nonlinear Schr\"odinger equation (NLS) with dispersion averaged nonlinearity of saturated type is considered. Such a nonlocal NLS is of integro-differential type and it arises naturally in modeling fiber-optics communication systems with periodically ...
Hundertmark, Dirk +3 more
core +3 more sources
Nodal solutions for the Choquard equation [PDF]
We consider the general Choquard equations $$ -\Delta u + u = (I_\alpha \ast |u|^p) |u|^{p - 2} u $$ where $I_\alpha$ is a Riesz potential. We construct minimal action odd solutions for $p \in (\frac{N + \alpha}{N}, \frac{N + \alpha}{N - 2})$ and ...
Ghimenti, Marco, Van Schaftingen, Jean
core +2 more sources
Existence of Solutions for p-Kirchhoff Problem of Brézis-Nirenberg Type with Singular Terms
In this paper, we prove the existence of positive solution for a p-Kirchhoff problem of Brézis-Nirenberg type with singular terms, nonlocal term, and the Caffarelli-Kohn-Nirenberg exponent by using variational methods, concentration compactness, and ...
Atika Matallah +2 more
doaj +1 more source
Concentration analysis and cocompactness [PDF]
Loss of compactness that occurs in may significant PDE settings can be expressed in a well-structured form of profile decomposition for sequences. Profile decompositions are formulated in relation to a triplet $(X,Y,D)$, where $X$ and $Y$ are Banach ...
C Clark +39 more
core +1 more source
The concentration-compactness principles for W s,p(·,·)(ℝ N ) and application [PDF]
Abstract We obtain a critical imbedding and then, concentration-compactness principles for fractional Sobolev spaces with variable exponents. As an application of these results, we obtain the existence of many solutions for a class of critical nonlocal problems with variable exponents, which is even new for constant exponent case.
Ky Ho, Yun-Ho Kim
openaire +2 more sources
Ground States for a Stationary Mean-Field Model for a Nucleon [PDF]
In this paper we consider a variational problem related to a model for a nucleon interacting with the $\omega$ and $\sigma$ mesons in the atomic nucleus. The model is relativistic, and we study it in a nuclear physics nonrelativistic limit, which is of a
Esteban, Maria J., Nodari, Simona Rota
core +5 more sources
A concentration-compactness principle for perturbed isoperimetric problems with general assumptions [PDF]
Derived from the concentration-compactness principle, the concept of generalized minimizer can be used to define generalized solutions of variational problems which may have components ``infinitely'' distant from each other. In this article and under mild assumptions we establish existence and density estimates of generalized minimizers of perturbed ...
Jules Candau-Tilh
openalex +3 more sources
Existence of solutions for critical systems with variable exponents
In this work, we deal with elliptic systems under critical growth conditions on the nonlinearities. Using a variant of concentration-compactness principle, we prove an existence result.
Hadjira Lalilia, Saadia Tas, Ali Djellit
doaj +1 more source
Ground states for scalar field equations with anisotropic nonlocal nonlinearities [PDF]
We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of Benci and Cerami to this variable exponent setting, and use it to prove that the Palais-Smale ...
Iannizzotto, Antonio +2 more
core +1 more source
Multiple perturbations of a singular eigenvalue problem
We study the perturbation by a critical term and a $(p-1)$-superlinear subcritical nonlinearity of a quasilinear elliptic equation containing a singular potential. By means of variational arguments and a version of the concentration-compactness principle
Cencelj, Matija +2 more
core +1 more source

