Results 71 to 80 of about 329,866 (205)
Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions
A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved ...
Yue Jiang+21 more
wiley +1 more source
Graph-based Descriptors for Condensed Matter [PDF]
Computational scientists have long been developing a diverse portfolio of methodologies to characterise condensed matter systems. Most of the descriptors resulting from these efforts are ultimately based on the spatial configurations of particles, atoms, or molecules within these systems.
arxiv
James Fergason, a Pioneer in Advancing of Liquid Crystal Technology [PDF]
James Lee Fergason (1934 - 2008) focused his research on the liquid crystals. His studies correspond to a relevant part of the history of soft matter science and technology of liquid crystals. Here a discussion of some of his researches.
arxiv
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian+6 more
wiley +1 more source
The Fermi Gases and Superfluids: Short Review of Experiment and Theory for Condensed Matter Physicists [PDF]
The study of ultracold atomic Fermi gases is a rapidly exploding subject which is defining new directions in condensed matter and atomic physics. Quite generally what makes these gases so important is their remarkable tunability and controllability. Using a Feshbach resonance one can tune the attractive two-body interactions from weak to strong and ...
arxiv
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source
The Janus membrane integrates a superhydrophilic CNF@CTAB‐MXene layer with a superhydrophobic PTFE layer, enabling efficient solar‐driven water evaporation and electricity generation. It achieves an evaporation rate of 1.51 kg m−2 h−1 with excellent salt resistance and long‐term stability.
Yinan Li+7 more
wiley +1 more source
Quantum Information Meets Quantum Matter -- From Quantum Entanglement to Topological Phase in Many-Body Systems [PDF]
This is the draft version of a textbook, which aims to introduce the quantum information science viewpoints on condensed matter physics to graduate students in physics (or interested researchers). We keep the writing in a self-consistent way, requiring minimum background in quantum information science.
arxiv
Ultrasonic Spectroscopy Applications in Condensed Matter Physics and Materials Science [PDF]
openaire +2 more sources
A Universal Biomimetic Approach for Making Artificial Antigen‐Presenting Cells for T Cell Activation
This study shows a biomimetic silica microcapsule (SMC) fabrication method under mild conditions for making artificial antigen‐presenting cells (aAPCs). Inspired by marine biomineralization, peptide‐mediated biosilicification enables silica shell formation on emulsion templates. The resulting SMCs possess a core–shell structure, controlled fluorescence
Fei Hou+5 more
wiley +1 more source