On đť‘›-parameter families of functions and associated convex functions [PDF]
Leonard Tornheim
openalex +1 more source
Remarks on the $Γ$-regularization of Non-convex and Non-semi-continuous Functions on Topological Vector Spaces [PDF]
We show that the minimization problem of any non-convex and non-lower semi-continuous function on a compact convex subset of a locally convex real topological vector space can be studied via an associated convex and lower semi-continuous function $\Gamma \left( h\right) $. This observation uses the notion of $\Gamma $-regularization as a key ingredient.
arxiv
Approximation of Convex Functions
In this note we give an elementary proof that an arbitrary convex function can be uniformly approximated by a convex \cinf-function on any closed bounded subinterval of the domain. An interesting byproduct of our proof is a global equation for a polygonal (piecewise affine) function.
openaire +3 more sources
Support, convergence, and differentiability properties of generalized convex functions [PDF]
John W. Green
openalex +1 more source
Improvement of Jensen, Jensen-Steffensen's, and Jensen's functionals related inequalities for various types of convexity [PDF]
In this paper we deal with improvement of Jensen, Jensen-Steffensen's and Jensen's functionals related inequalities for uniformly convex, phi-convex and superquadratic functions.
arxiv
Linear estimation of the mean value of a stationary random process with convex correlation function [PDF]
Jaroslav Hájek
openalex +1 more source
AbstractIn this paper we study uniformly convex functions and uniformly convex functions at a point, giving some properties and characterizations of them. Further, we give some examples and applications of these types of functions.
openaire +2 more sources
Characterization of the subdifferentials of convex functions [PDF]
R. T. Rockafellar
openalex +1 more source
Holomorphic functions with values in locally convex spaces and applications to integral formulas [PDF]
Lutz Bungart
openalex +2 more sources
On the monotonicity of the gradient of a convex function [PDF]
George J. Minty
openalex +1 more source