Results 131 to 140 of about 1,210,874 (307)
3D Printed Ultra‐Fast Plastic Scintillators Based on Perovskite‐Photocurable Polymer Composite
The demand for radiation detection is increasing in a number of fields, including high‐energy physics, medical imaging, and homeland security. This study serves to demonstrate the potential for the fabrication of fast perovskite‐based scintillators with complex shapes via stereolithographic additive manufacturing, representing a new path toward the ...
Antonella Giuri+16 more
wiley +1 more source
Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir+8 more
wiley +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski+9 more
wiley +1 more source
Time‐Controlled Dual Targeting to Program Systemic and Intercellular Transfer of Therapeutic Effects
Aspirin‐liposomes loaded onto monocytes enable inflammation‐triggered targeting and efficient hand‐over of aspirin to inflamed cells. Monocytes uptake a significant portion of aspirin‐liposomes, prolonging therapeutic action. This approach enhances anti‐inflammatory effects through intercellular transfer, demonstrating a translational strategy for ...
Seung Eun Yu+6 more
wiley +1 more source
Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues
Jiseong Kim
openalex +2 more sources
Print‐and‐Plate Architected Electrodes for Electrochemical Transformations Under Flow
Typical flow cell electrodes are composed of stochastic porous carbon, limiting understanding of electrode structure‐performance relationships. This work describes an approach, termed “print‐and‐plate,” to prepare porous electrodes by direct ink writing followed by conformal metal coating.
Dylan M. Barber+12 more
wiley +1 more source
Approximate Min-Sum Subset Convolution
Exponential-time approximation has recently gained attention as a practical way to deal with the bitter NP-hardness of well-known optimization problems. We study for the first time the $(1 + \varepsilon)$-approximate min-sum subset convolution. This enables exponential-time $(1 + \varepsilon)$-approximation schemes for problems such as minimum-cost $k$-
openaire +2 more sources
Multi‐Scaled Cellulosic Nanonetworks from Tunicates
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj+10 more
wiley +1 more source
Biofilm Control by Active Topography with Mucin Coating
This study reports a new antifouling strategy based on a bioinspired design. Mucin coating enhances biofilm control by active topography with beating micron‐sized pillars. Besides the mechanical force of beating pillars, the antibiofilm activities also involve biological factors since mucin coating inhibits swarming motility and c‐di‐GMP synthesis in ...
Zehui Han+4 more
wiley +1 more source