Results 61 to 70 of about 552,282 (301)
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani +4 more
wiley +1 more source
A graph neural network-enhanced knowledge graph framework for intelligent analysis of policing cases
In this paper, we model a knowledge graph based on graph neural networks, conduct an in-depth study on building knowledge graph embeddings for policing cases, and design a graph neural network-enhanced knowledge graph framework.
Hongqiang Zhu
doaj +1 more source
Enhanced CNN for image denoising
Owing to flexible architectures of deep convolutional neural networks (CNNs), CNNs are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train.
Fei, Lunke +5 more
core +1 more source
Additive manufacturing (AM) transforms space hardware by enabling lightweight, high‐performance, and on‐demand production. This review outlines AM processes—powder bed fusion (PBF), directed energy deposition (DED), binder jetting (BJ), sheet lamination (SL), and material extrusion (ME)—applied to propulsion, satellite structures, and thermal devices ...
Stelios K. Georgantzinos +8 more
wiley +1 more source
SMT Assembly Inspection Using Dual-Stream Convolutional Networks and Two Solder Regions
The automated optical inspection of a surface mount technology line inspects a printed circuit board for quality assurance, and subsequently classifies the chip assembly defects.
Young-Gyu Kim, Tae-Hyoung Park
doaj +1 more source
INVESTIGATIONS ON THE POTENTIAL OF CONVOLUTIONAL NEURAL NETWORKS FOR VEHICLE CLASSIFICATION BASED ON RGB AND LIDAR DATA [PDF]
In recent years, there has been a significant improvement in the detection, identification and classification of objects and images using Convolutional Neural Networks.
R. Niessner, H. Schilling, B. Jutzi
doaj +1 more source
Bone tumor examination based on FCNN-4s and CRF fine segmentation fusion algorithm
Background and objective: Bone tumor is a kind of harmful orthopedic disease, there are benign and malignant points. Aiming at the problem that the accuracy of the existing machine learning algorithm for bone tumor image segmentation is not high, a bone ...
Shiqiang Wu +6 more
doaj +1 more source
Isointense infant brain MRI segmentation with a dilated convolutional neural network [PDF]
Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D ...
Moeskops, Pim, Pluim, Josien P. W.
core +2 more sources
Lung nodule classification is a class imbalanced problem, as nodules are found with much lower frequency than non-nodules. In the class imbalanced problem, conventional classifiers tend to be overwhelmed by the majority class and ignore the minority ...
Nakano, Hiroki +3 more
core +1 more source
Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir +8 more
wiley +1 more source

