Results 131 to 140 of about 133,855 (339)

Graded Hydroxyapatite Triply Periodic Minimal Surface Structures for Bone Tissue Engineering Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates the role of triply periodic minimal structures in load bearing bone tissue engineering applications. Research uses a combination of mechanical testing, material characterization, and in vitro tests to study the impact of TPMS lattice structures (gyroid, lidinoid and split‐P).
Tejas M. Koushik   +2 more
wiley   +1 more source

TPMS‐Gyroid Scaffold‐Mediated Up‐Regulation of ITGB1 for Enhanced Cell Adhesion and Immune‐Modulatory Osteogenesis

open access: yesAdvanced Healthcare Materials, EarlyView.
A) SLM generates biomimetic bone scaffolds with consistent porosity but varying TPMS‐Gyroid unit cell designs (TG15, TG20, TG25, TG30). B) By enhancing the expression of ITGB1, TPMS‐Gyroid scaffolds can facilitate osteogenic differentiation in BMSCs and promote M2 polarization in macrophages.
Jing Wang   +9 more
wiley   +1 more source

Multienzyme (3‐in‐1)‐Mimicking a Single Nucleobase‐Derived Bionanozyme for Versatile Environmental and Biomedical Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This study reports the development of bioinspired 2D crystalline Bionanozyme derived from a single nucleobase. It effectively mimics multienzyme activity to detect and remove phenolic pollutants, identify disease biomarkers with high sensitivity, and protect cells from oxidative stress.
Subrat Vishwakarma   +8 more
wiley   +1 more source

Human Skin Models in Biophotonics: Materials, Methods, and Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This review discusses how the optical properties of human skin can be replicated in human skin models. It describes the principles, materials, and techniques used to develop artificial skin for biophotonics research. Finally, the article highlights recent advances and shows how these models improve the study of light‐skin interactions without the need ...
Dardan Bajrami   +4 more
wiley   +1 more source

Manipulating Ferroelectric Topological Polar Structures with Twisted Light

open access: yesAdvanced Materials, EarlyView.
We demonstrate dynamic control of ferroelectric order in quasi‐2D CsBiNb2O7 using twisted ultraviolet light carrying orbital angular momentum. Our approach harnesses non‐resonant multiphoton absorption and induced strain to modulate topological of ferroelectric polarization textures.
Nimish P. Nazirkar   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy