Results 161 to 170 of about 716,617 (262)

Modeling spatial covariance functions

open access: yes, 2014
Covariance modeling plays a key role in the spatial data analysis as it provides important information about the dependence structure of underlying processes and determines performance of spatial prediction. Various parametric models have been developed to accommodate the idiosyncratic features of a given dataset.
openaire   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

Inverse Design of Alloys via Generative Algorithms: Optimization and Diffusion within Learned Latent Space

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla   +4 more
wiley   +1 more source

Multilevel Multivariate Functional Principal Component Analysis of Evoked and Induced Event-Related Spectral Perturbations. [PDF]

open access: yesStat Biosci
Dong M   +12 more
europepmc   +1 more source

Deep Learning‐Assisted Coherent Raman Scattering Microscopy

open access: yesAdvanced Intelligent Discovery, EarlyView.
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu   +4 more
wiley   +1 more source

Identification of Exhaled Volatile Organic Compounds Biomarkers for Lung Cancer Under Data‐Limited Conditions Using Data Augmentation and Multi‐View Feature Selection

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work introduces a novel framework for identifying non‐small cell lung cancer biomarkers from hundreds of volatile organic compounds in breath, analyzed via gas chromatography‐mass spectrometry. This method integrates generative data augmentation and multi‐view feature selection, providing a stable and accurate solution for biomarker discovery in ...
Guancheng Ren   +10 more
wiley   +1 more source

Advanced Experiment Design Strategies for Drug Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy