Results 281 to 290 of about 839,348 (339)

Double Helical Plasmonic Antennas

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic double helical antennas funnel circularly polarized light to the nanoscale, offering strong chiroptical interaction and directional light emission. Extending a single helix design tool, this study combines numerical modeling with experimental validation, revealing large, broadband dissymmetry factors in the visible range.
Aleksei Tsarapkin   +7 more
wiley   +1 more source

Photocatalytic Versus Stoichiometric Hydrogen Generation Using Mesoporous Silicon Catalysts: The Complex Role of Sacrificial Reagents

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the importance of accounting for stoichiometric hydrogen produced when utilizing Si photocatalysts. The stoichiometric contribution is sacrificial reagent dependent and decreases with increasing sterics around the catalyst surface.
Sarrah H. Putwa   +4 more
wiley   +1 more source

Tuning the Dielectric Properties of Individual Clay Nanosheets by Interlayer Composition: Toward Nano‐Electret Materials

open access: yesAdvanced Functional Materials, EarlyView.
The dielectric properties of clays are studied on the level of individual monolayers and functional double stacks. The material breakdown characteristics and charge storage performance are analyzed. For illustration, a defined charge pattern representing a cuneiform character is produced, written into a microscopic clay tile, referencing the origins of
Sebastian Gödrich   +6 more
wiley   +1 more source

High‐Concentration Mesogen‐Assisted Exfoliation of Low‐Dimensional Nanomaterials for Achieving Ultralow‐Temperature Actuations of Liquid Crystal Elastomers

open access: yesAdvanced Functional Materials, EarlyView.
Most matter is nominally frozen in the polar regions or space, and liquid crystal materials are no exception. Consequently, soft actuators, including liquid crystal elastomers (LCEs), are inoperative under such extreme cold in response to stimuli, as their motion relies on mechanical deformation.
Hyeonseong Kim   +5 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Crystal engineering with DNA

Nature Reviews Materials, 2019
This Review chronicles over two decades of research into creating a genetic code for crystal engineering. Rather than directing biological processes, this code uses synthetic forms of DNA to programme the assembly of nanoparticles and microparticles into 1D, 2D and 3D crystalline architectures, in which almost every aspect of the resultant structures ...
Christine R Laramy   +2 more
exaly   +2 more sources

Home - About - Disclaimer - Privacy