Results 161 to 170 of about 1,653,701 (332)

Domain associated with zinc fingers‐containing NF90‐NF45 complex inhibits m6A modification of primary microRNA by suppressing METTL3/14 activity

open access: yesFEBS Open Bio, EarlyView.
NF90–NF45 functions as a negative regulator of methyltransferase‐like 3/14 (METTL3/14)‐mediated N6‐methyladenosine (m6A) modification on primary microRNAs (pri‐miRNAs). NF90–NF45 binds to anti‐oncogenic pri‐miRNAs and inhibits their m6A modification, thereby suppressing the biogenesis of anti‐oncogenic miRNAs.
Takuma Higuchi   +6 more
wiley   +1 more source

mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding

open access: yesCell, 2018
M. Delarue   +17 more
semanticscholar   +1 more source

Multi‐omics and low‐input proteomics profiling reveals dynamic regulation driving pluripotency initiation in early mouse embryos

open access: yesFEBS Open Bio, EarlyView.
Mouse pre‐implantation development involves a transition from totipotency to pluripotency. Integrating transcriptomics, epigenetic profiling, low‐input proteomics and functional assays, we show that eight‐cell embryos retain residual totipotency features, whereas cytoskeletal remodeling regulated by the ubiquitin‐proteasome system drives progression ...
Wanqiong Li   +8 more
wiley   +1 more source

Cytoplasm's Got Moves.

open access: yesDevelopmental Cell, 2020
Shayan Shamipour   +2 more
semanticscholar   +1 more source

BMI‐1 modulation and trafficking during M phase in diffuse intrinsic pontine glioma

open access: yesFEBS Open Bio, EarlyView.
The schematic illustrates BMI‐1 phosphorylation during M phase, which triggers its translocation from the nucleus to the cytoplasm. In cycling cells, BMI‐1 functions within the PRC1 complex to mediate H2A K119 monoubiquitination. Following PTC596‐induced M phase arrest, phosphorylated BMI‐1 dissociates from PRC1 and is exported to the cytoplasm via its
Banlanjo Umaru   +6 more
wiley   +1 more source

Nuclear pore links Fob1‐dependent rDNA damage relocation to lifespan control

open access: yesFEBS Open Bio, EarlyView.
Damaged rDNA accumulates at a specific perinuclear interface that couples nucleolar escape with nuclear envelope association. Nuclear pores at this site help inhibit Fob1‐induced rDNA instability. This spatial organization of damage handling supports a functional link between nuclear architecture, rDNA stability, and replicative lifespan in yeast.
Yamato Okada   +5 more
wiley   +1 more source

Translocation from nuclei to cytoplasm is necessary for anti A‐PCD activity and turnover of the Type II IAP BcBir1 [PDF]

open access: bronze, 2015
Neta Shlezinger   +5 more
openalex   +1 more source

Home - About - Disclaimer - Privacy