Results 201 to 210 of about 4,194,830 (297)

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Automated metadata generation for linked data generation and publishing workflows [PDF]

open access: yes, 2016
De Nies, Tom   +5 more
core   +1 more source

Correlation of the differential expression of PIK3R1 and its spliced variant, p55α, in pan‐cancer

open access: yesMolecular Oncology, EarlyView.
PIK3R1 undergoes alternative splicing to generate the isoforms, p85α and p55α. By combining large patient datasets with laboratory experiments, we show that PIK3R1 spliced variants shape cancer behavior. While tumors lose the protective p85α isoform, p55α is overexpressed, changes linked to poorer survival and more pronounced in African American ...
Ishita Gupta   +10 more
wiley   +1 more source

Rescued from the deep: Publishing scientific ocean drilling long tail data

open access: hybrid, 2015
Jamus Collier   +9 more
openalex   +1 more source

Basroparib inhibits YAP‐driven cancers by stabilizing angiomotin

open access: yesMolecular Oncology, EarlyView.
Basroparib, a selective tankyrase inhibitor, suppresses Wnt signaling and attenuates YAP‐driven oncogenic programs by stabilizing angiomotin. It promotes AMOT–YAP complex formation, enforces cytoplasmic YAP sequestration, inhibits YAP/TEAD transcription, and sensitizes YAP‐active cancers, including KRAS‐mutant colorectal cancer, to MEK inhibition.
Young‐Ju Kwon   +4 more
wiley   +1 more source

When goodbye comes too soon: How to wrap up science projects quickly. [PDF]

open access: yesPLoS Biol
Hagenauer MH   +4 more
europepmc   +1 more source

RaMBat: Accurate identification of medulloblastoma subtypes from diverse data sources with severe batch effects

open access: yesMolecular Oncology, EarlyView.
To integrate multiple transcriptomics data with severe batch effects for identifying MB subtypes, we developed a novel and accurate computational method named RaMBat, which leveraged subtype‐specific gene expression ranking information instead of absolute gene expression levels to address batch effects of diverse data sources.
Mengtao Sun, Jieqiong Wang, Shibiao Wan
wiley   +1 more source

Home - About - Disclaimer - Privacy