Results 271 to 280 of about 2,278,026 (322)

Effects of Temperature Annealing on the Intrinsic Transport Mechanisms of Solution Processed Graphene Nanosheet Networks

open access: yesAdvanced Functional Materials, EarlyView.
Unravelling charge transport mechanisms in graphene nanosheet networks: by combining temperature‐dependent conductivity measurements with a Random Resistor Network model, this study identifies a transition from hopping‐dominated conduction to a band‐like transport mechanism.
Alessandro Grillo   +9 more
wiley   +1 more source

Predicting Aggregation Behavior of Nanoparticles in Liquid Crystals via Automated Data‐Driven Workflows

open access: yesAdvanced Functional Materials, EarlyView.
Herein, a comprehensive framework that enabled the optimization of colloidal solubility within a high‐dimensional parameter space and study of reversible assembly processes is developed. This data‐driven workflow integrated innovations including the robotic platform for automated AuNPs functionalization, machine learning for predicting and revealing ...
Yueyang Gao   +5 more
wiley   +1 more source

Crossover Effects of Transition‐Metal Ions on Lithium‐Metal Anode in Localized High Concentration Electrolytes

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the impact of transition‐metal (TM) ions (Ni2⁺, Mn2⁺, Co2⁺) on the performance of lithium‐metal anode in localized high‐concentration electrolytes. Mn2⁺ and Co2⁺ destabilize SEI and CEI layers, causing capacity fade and overpotential, while Ni2⁺ shows minimal effects. These findings underscore the need for electrolyte optimization
Zezhou Guo   +2 more
wiley   +1 more source

Superionic Disulfonic Acid Polymers

open access: yesAdvanced Functional Materials, EarlyView.
A strategy is presented to enhance the mechanical and ion transport properties of acid‐functionalized polymers through controlled polymerizations of precisely designed disulfonic acid monomers with well‐defined functional group arrangements. This approach allows for fine control over molecular interactions, and unexpected hydrophobic characteristics ...
Xuelang Gao   +5 more
wiley   +1 more source

Ultrafast Room‐Temperature Nanofabrication via Ozone‐Based Gas‐Phase Metal‐Assisted Chemical Etching for High‐Performance Silicon Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy